Artin groups, CAT(0) geometry and property A
Artin 群,CAT(0) 几何和属性 A
基本信息
- 批准号:EP/H04874X/1
- 负责人:
- 金额:$ 0.79万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Yu's property A is a wide ranging generalisation of the notion of amenability. It was used by Yu, by Higson and Kasparov, and by others, to establish the strong Novikov conjecture for many important classes of groups. For example word hyperbolic groups and finitely generated linear groups are all known to satisfy property A.Property A is a geometric property which may be demonstrated for a given group by constructing certain weighting functions on the points of a space on which the group acts properly (and usually co-compactly) so that the functions are almost invariant under the action. This was done by the PI with his collaborators for groups admitting a proper action on a CAT(0) cube complex. The weighting functions in this case are explicit, and have attractive growth properties. It is the priniciple aim of this project to exploit that fact to generalise the known result to cover certain non-proper actions, and in particular to apply the technique to establish property A to the natural class of Artin groups. These arise in the study of hyperplane arrangements in algebraic geometry and have been extensively studied in geometric group theory. The request is to fund a visit by the Principal Investigator to Prof. Erik Guentner at the University of Hawaii for 10 days in February/March 2010. The purpose of the visit is to extend and complete an existing collaboration on analytic properties of Artin groups and 2-dimensional CAT(0) spaces, specifically a study of Yu's property A, exploring the interaction of geometry and cohomology in this context.The methods developed are likely to extend to other classes of groups of interest to geometers and to those working on the Baum Connes conjecture.
俞敏洪的房产A是对宜人概念的广泛概括。它被Yu、Higson和Kasparov以及其他人用来为许多重要的群类建立强Novikov猜想。例如,字双曲群和有限生成的线性群都满足性质A。性质A是一种几何性质,它可以通过在群作用适当(通常是余紧的)的空间的点上构造某些加权函数来证明,从而使函数在作用下几乎不变。这是由PI和他的合作者为承认对CAT(0)立方体复合体的适当操作的小组完成的。在这种情况下,权函数是显式的,并且具有吸引人的增长性质。这个项目的主要目的是利用这一事实来推广已知的结果,以涵盖某些不适当的行为,特别是将建立性质A的技巧应用于Artin群的自然类。它们产生于对代数几何中超平面排列的研究,并在几何群论中得到了广泛的研究。这项请求是为了资助首席调查员在2010年2月/3月对夏威夷大学Erik Guentner教授进行为期10天的访问。这次访问的目的是扩展和完成在Artin群和二维CAT(0)空间的分析性质方面的现有合作,特别是对Yu性质A的研究,探索本文中几何和上同调之间的相互作用。所开发的方法很可能扩展到几何和Baum Connes猜想工作的其他感兴趣的群类。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A homological characterization of topological amenability
拓扑顺从性的同调表征
- DOI:10.48550/arxiv.1008.4154
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Brodzki J
- 通讯作者:Brodzki J
The local spectrum of the Dirac operator for the universal cover of SL 2 ( R )
SL 2 ( R ) 通用覆盖的狄拉克算子的局部谱
- DOI:10.1016/j.jfa.2015.10.010
- 发表时间:2016
- 期刊:
- 影响因子:1.7
- 作者:Brodzki J
- 通讯作者:Brodzki J
Complexes and exactness of certain Artin groups
某些 Artin 群的复数和精确性
- DOI:10.2140/agt.2011.11.1471
- 发表时间:2011
- 期刊:
- 影响因子:0.7
- 作者:Guentner E
- 通讯作者:Guentner E
K-theory and exact sequences of partial translation algebras
K 理论和部分平移代数的精确序列
- DOI:10.1016/j.aim.2014.12.023
- 发表时间:2015
- 期刊:
- 影响因子:1.7
- 作者:Brodzki J
- 通讯作者:Brodzki J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Niblo其他文献
Graham Niblo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
- 批准号:
2343087 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
Standard Grant
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
- 批准号:
ES/Y010639/1 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
- 批准号:
2414332 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
- 批准号:
2346615 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
Standard Grant
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 0.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




