Integrating advanced nanomaterials into transformative technologies

将先进纳米材料融入变革性技术

基本信息

  • 批准号:
    EP/I00419X/1
  • 负责人:
  • 金额:
    $ 132.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Moore's Law, the touchstone for advances in microelectronics, has bench-marked improvements in computer processing power over the past 40 years. The demand for continued increase is insatiable, but conventional technologies will succumb to fundamental limits on device size within a decade. My vision is removal of this roadblock to Moore's Law. My solution is to replace today's binary technologies with a range of intrinsically multi-state devices, thereby dramatically increasing performance without a need for further miniaturization. During my fellowship I will build a research group to explore the physics, materials and advances in characterisation techniques required to enable this transformation. My core research programme takes as an exemplar resistive random access memory (Re-RAM), a genuinely next-generation technology that could make obsolete both conventional random access memory (RAM) and hard disk drives (HDDs). It offers in a single device the non-volatility and write-endurance of HDDs with the rapid access times of conventional RAM. Furthermore, it has the potential for 'stacked', 3-dimensional architectures and intrinsic multi-state functionality, which together could truly revolutionise data storage densities. Re-RAM materials undergo reversible chemical or structural changes under an applied voltage, giving a substantial change in device resistance that can function as a switch or stored data 'bit'. However, even basic understanding of the fabrication and nano-patterning protocols, let alone the underlying physics of the switching mode, is lacking for most candidate materials. Thus, it is not currently possible to build reliable multi-state devices. Moving the nanoscience to application can only be enabled by substantial research into processing and function. In many cases, the present uncertainty is simply because appropriate tools for nano-resolved characterization are only now becoming available. One of the most exciting aspects of this fellowship is my proposed development of in-situ electron microscopy characterization of prototypical devices during operation. For the first time, it will be possible to use electron microscopy to image devices and probe their chemistry on the nanometre scale whilst simultaneously applying voltage or current pulses to the sample. This advance will enable a full understanding of Re-RAM devices, their kinetics, scalability and their tolerance to defects. Ultimately, it will lead to improved device design and I confidently expect it to have a variety of beneficiaries outside of this programme. A further transformative aspect of the Fellowship is that I will augment Re-RAM far beyond the current state of the art by incorporating multiferroic materials. These materials retain well-defined electric and magnetic states that could be incorporated into the basic Re-RAM device but switched independently, further expanding the multi-state capability to truly transcend today's binary technologies. During this Fellowship, improved fabrication protocols will be developed and the combined functionality and intrinsic scalability of these new technologies will be assessed. The switching behaviour and structure-function correlation will be imaged directly, leading to unprecedented insights and, potentially, discovering a host of new and exciting physics.
摩尔定律是衡量微电子技术进步的试金石,在过去的40年里,它为计算机处理能力的提高提供了基准。对持续增长的需求是无法满足的,但传统技术将在十年内屈服于设备尺寸的根本限制。我的愿景是消除摩尔定律的障碍。我的解决方案是用一系列本质上多状态的器件取代当今的二进制技术,从而在不需要进一步小型化的情况下显著提高性能。在我的奖学金期间,我将建立一个研究小组,探索实现这种转变所需的物理,材料和表征技术的进步。我的核心研究计划以电阻式随机存取存储器(Re-RAM)为例,这是一种真正的下一代技术,可以淘汰传统的随机存取存储器(RAM)和硬盘驱动器(HDD)。它在单个器件中提供了HDD的非易失性和写入耐久性,以及传统RAM的快速访问时间。此外,它还具有“堆叠”、三维架构和固有的多态功能的潜力,这些都可以真正彻底改变数据存储密度。Re-RAM材料在外加电压下发生可逆的化学或结构变化,从而使器件电阻发生实质性变化,可以用作开关或存储的数据“位”。然而,对于大多数候选材料,甚至对制造和纳米图案化协议的基本理解都是缺乏的,更不用说切换模式的基础物理了。因此,目前不可能构建可靠的多态设备。只有对加工和功能进行大量研究,才能使纳米科学得到应用。在许多情况下,目前的不确定性仅仅是因为纳米分辨表征的适当工具现在才变得可用。这个奖学金最令人兴奋的方面之一是我提出的发展原位电子显微镜表征的原型设备在操作过程中。这将是第一次使用电子显微镜对器件进行成像,并在纳米尺度上探测它们的化学性质,同时向样品施加电压或电流脉冲。这一进展将使人们能够充分了解Re-RAM器件,它们的动力学,可扩展性和对缺陷的容忍度。最终,它将导致改进的设备设计,我相信它会有各种各样的受益者以外的这一计划。该奖学金的另一个变革方面是,我将通过加入多铁性材料来增强Re-RAM,使其远远超出目前的技术水平。这些材料保留了定义明确的电和磁状态,可以集成到基本的Re-RAM器件中,但可以独立切换,进一步扩展了多态能力,真正超越了当今的二进制技术。在该奖学金期间,将开发改进的制造协议,并评估这些新技术的组合功能和内在可扩展性。开关行为和结构-功能相关性将被直接成像,导致前所未有的见解,并可能发现许多新的和令人兴奋的物理学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of Randomly Distributed Dopants on $\Omega$ -Gate Junctionless Silicon Nanowire Transistors
  • DOI:
    10.1109/ted.2018.2817919
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    H. Carrillo-Nuñez;M. M. Mirza-M.;D. Paul;D. Maclaren;A. Asenov;V. Georgiev
  • 通讯作者:
    H. Carrillo-Nuñez;M. M. Mirza-M.;D. Paul;D. Maclaren;A. Asenov;V. Georgiev
Spectroscopic Indications of Tunnel Barrier Charging as the Switching Mechanism in Memristive Devices
  • DOI:
    10.1002/adfm.201702282
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Arndt, Benedikt;Borgatti, Francesco;Dittmann, Regina
  • 通讯作者:
    Dittmann, Regina
Gadolinium-doped magnetite nanoparticles from a single-source precursor
  • DOI:
    10.1039/c6ra18095g
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Douglas, F. J.;MacLaren, D. A.;Murrie, M.
  • 通讯作者:
    Murrie, M.
A study of the role of the solvent during magnetite nanoparticle synthesis: tuning size, shape and self-assembly
  • DOI:
    10.1039/c2ra20494k
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Douglas, Fraser J.;MacLaren, Donald A.;Murrie, Mark
  • 通讯作者:
    Murrie, Mark
Self-assembly of ultra-thin lanthanide oxide nanowires via surfactant-mediated imperfect oriented attachment of nanoparticles
  • DOI:
    10.1039/c2ce25990g
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Douglas, Fraser J.;MacLaren, Donald A.;Murrie, Mark
  • 通讯作者:
    Murrie, Mark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald MacLaren其他文献

Department of Agricultural and Resource Economics University of California Davis How Competitive is the World Wheat Market ?
加州大学戴维斯分校农业与资源经济系 世界小麦市场的竞争力如何?
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Colin A. Carter;Donald MacLaren;Alper Yilmaz
  • 通讯作者:
    Alper Yilmaz

Donald MacLaren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald MacLaren', 18)}}的其他基金

Microscopy with neutral helium atoms: A wide-ranging new technique for delicate samples
中性氦原子显微镜:适用于精细样品的广泛新技术
  • 批准号:
    EP/R008051/1
  • 财政年份:
    2017
  • 资助金额:
    $ 132.16万
  • 项目类别:
    Research Grant
Nanostructured half-Heuslers for thermoelectric waste heat recovery
用于热电废热回收的纳米结构半赫斯勒
  • 批准号:
    EP/N017218/1
  • 财政年份:
    2016
  • 资助金额:
    $ 132.16万
  • 项目类别:
    Research Grant
New Directions in Materials Characterisation Using Vortex Electron Microscopy and Spectroscopy
使用涡旋电子显微镜和光谱学进行材料表征的新方向
  • 批准号:
    EP/L001969/1
  • 财政年份:
    2013
  • 资助金额:
    $ 132.16万
  • 项目类别:
    Research Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
晚期糖基化终产物受体与视网膜母细胞瘤蛋白在前列腺癌细胞中的相互作用及意义
  • 批准号:
    30700835
  • 批准年份:
    2007
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Cell Control via Spatiotemporal Microenvironmental pH Modulation
通过时空微环境 pH 调节进行细胞控制
  • 批准号:
    10713388
  • 财政年份:
    2023
  • 资助金额:
    $ 132.16万
  • 项目类别:
Manganese dioxide as a nanozyme to mitigate oxidative stress in osteoarthritis
二氧化锰作为纳米酶可减轻骨关节炎的氧化应激
  • 批准号:
    10751638
  • 财政年份:
    2023
  • 资助金额:
    $ 132.16万
  • 项目类别:
Lignocellulosic Nanomaterials for Advanced Applications
用于高级应用的木质纤维素纳米材料
  • 批准号:
    572703-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 132.16万
  • 项目类别:
    University Undergraduate Student Research Awards
Precise Construction of Complex Nanomaterials via 3D Printing Toward Advanced Bio-Hybrid Materials
通过 3D 打印精确构建复杂纳米材料,打造先进生物混合材料
  • 批准号:
    567511-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 132.16万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Optical properties control of advanced functional nanomaterials using spatially selective chemical reactions
利用空间选择性化学反应控制先进功能纳米材料的光学性质
  • 批准号:
    22K19013
  • 财政年份:
    2022
  • 资助金额:
    $ 132.16万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Engineered Nano-formulations for STING Activation
用于 STING 激活的工程纳米制剂
  • 批准号:
    10539415
  • 财政年份:
    2022
  • 资助金额:
    $ 132.16万
  • 项目类别:
Electrochemically-Controlled Rapid Chromatographic Separation of Nuisance Compounds from Natural Product Extracts
电化学控制快速色谱分离天然产物提取物中的有害化合物
  • 批准号:
    10706533
  • 财政年份:
    2022
  • 资助金额:
    $ 132.16万
  • 项目类别:
CROSSBRAIN: Distributed and federated cross-modality actuation through advanced nanomaterials and neuromorphic learning
CROSSBRAIN:通过先进纳米材料和神经形态学习进行分布式和联合跨模态驱动
  • 批准号:
    10053123
  • 财政年份:
    2022
  • 资助金额:
    $ 132.16万
  • 项目类别:
    EU-Funded
Advanced functional nanomaterials for photocatalysis
用于光催化的先进功能纳米材料
  • 批准号:
    DGDND-2020-05921
  • 财政年份:
    2022
  • 资助金额:
    $ 132.16万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Advanced functional nanomaterials for photocatalysis
用于光催化的先进功能纳米材料
  • 批准号:
    RGPIN-2020-05921
  • 财政年份:
    2022
  • 资助金额:
    $ 132.16万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了