Nonlinear Eigenvalue Problems: Theory and Numerics

非线性特征值问题:理论与数值

基本信息

  • 批准号:
    EP/I005293/1
  • 负责人:
  • 金额:
    $ 155.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Nonlinear eigenvalue problems arise in a wide variety of science and engineering applications, such as the dynamic analysis of mechanical systems (where the eigenvalues represent vibrational frequencies), the linear stability of flows in fluid mechanics, the stability analysis of time-delay systems, and electronic band structure calculations for photonic crystals. These problems present many mathematical challenges. For some there is a lack of underlying theory. For others numerical methods struggle to provide any accuracy or to solve very large problems in a reasonable time.The trend towards extreme designs (such as in micro-electromechanical (MEMS) devices and superjumbo jets) means that these nonlinear eigenproblems are often poorly conditioned (hence difficult to solve accurately) while also having algebraic structure that should be exploited in a numerical method in order to ensure physical meaning of the computed results. As a specific example, in a project at TU Berlin modelling the sound and vibration levels in European high-speed trains it was found that standard finite element packages provided no correct figures in the computed solutions until linear algebra techniques of the type to be developed in this project were brought into play in the underlying quadratic (degree 2) eigenvalue problem (see the cover article in SIAM News, Nov. 2004).With the help of the funded research team I will develop theory and methods that enable the solution of new classes of emerging eigenproblems (e.g., rational) and more efficient and more accurate solution of existing problems. The project will exploit the new concept of structure preserving transformations for matrix polynomials and a new linearization-based approach for rational eigenproblems. For the general nonlinear eigenproblem, we will to devise good approximations to the nonlinear parts by rational or polynomial functions that will then be handled with techniques for the latter problems.The work will have significant impact through the provision of algorithms and software, either open source or distributed through numerical libraries, that enables efficient computer solution of these problems.
非线性本征值问题出现在各种科学和工程应用中,例如机械系统的动态分析(其中本征值表示振动频率),流体力学中流动的线性稳定性,时滞系统的稳定性分析以及光子晶体的电子能带结构计算。这些问题提出了许多数学挑战。对一些人来说,缺乏基本的理论。对于其他数值方法则难以提供任何精度或在合理的时间内解决非常大的问题。(例如在微机电(MEMS)装置和超大型喷气机中)意味着这些非线性特征值问题通常条件不佳(因此很难准确解决)同时还具有应当在数值方法中利用的代数结构,以便确保计算结果的物理意义。作为一个具体的例子,在柏林工业大学的一个项目中,对欧洲高速列车的声音和振动级进行建模,发现标准有限元软件包在计算解中没有提供正确的图形,直到在该项目中开发的线性代数技术在基础二次方程中发挥作用。(2度)特征值问题(见2004年11月SIAM新闻的封面文章)。在资助研究团队的帮助下,我将开发理论和方法,使新出现的特征值问题(例如,合理),更有效、更准确地解决存在的问题。该项目将利用矩阵多项式的结构保持变换的新概念和有理特征值问题的新的基于线性化的方法。对于一般的非线性特征值问题,我们将通过有理函数或多项式函数来设计非线性部分的良好近似,然后用后一问题的技术来处理。这项工作将通过提供算法和软件产生重大影响,这些算法和软件可以是开源的,也可以通过数值库分发,使这些问题的有效计算机解决方案成为可能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hermitian matrix polynomials with real eigenvalues of definite type. Part I: Classification
具有确定类型的实特征值的埃尔米特矩阵多项式。
A parametrization of structure-preserving transformations for matrix polynomials
矩阵多项式的结构保持变换的参数化
A framework for analyzing nonlinear eigenproblems and parametrized linear systems
  • DOI:
    10.1016/j.laa.2009.12.038
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    L. Grammont;N. Higham;F. Tisseur
  • 通讯作者:
    L. Grammont;N. Higham;F. Tisseur
Improving the numerical stability of the Sakurai-Sugiura method for quadratic eigenvalue problems
提高二次特征值问题的 Sakurai-Sugiura 方法的数值稳定性
  • DOI:
    10.14495/jsiaml.9.17
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Chen H
  • 通讯作者:
    Chen H
The Structured Condition Number of a Differentiable Map between Matrix Manifolds, with Applications
矩阵流形间可微映射的结构化条件数及其应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francoise Tisseur其他文献

Numerical and Fundamental Study on Ice Growth of Ice Crystal Accretion
冰晶积聚冰生长的数值与基础研究
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongjia Chen;Yasuyuki Maeda;Akira Imakura;Tetsuya Sakurai;Francoise Tisseur;K.Furuta and M.Yamamoto
  • 通讯作者:
    K.Furuta and M.Yamamoto

Francoise Tisseur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francoise Tisseur', 18)}}的其他基金

Mixed Precision Symmetric Eigensolvers: Proof of Concept
混合精度对称特征求解器:概念证明
  • 批准号:
    EP/W018101/1
  • 财政年份:
    2022
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Research Grant

相似海外基金

Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Standard Grant
Theory and Algorithms for Eigenvector-Dependent Nonlinear Eigenvalue Problems
特征向量相关的非线性特征值问题的理论和算法
  • 批准号:
    2110731
  • 财政年份:
    2021
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Standard Grant
Solvability and solutions' analysis of nonlinear elliptic equations from the viewpoint of eigenvalue problems
从特征值问题的角度看非线性椭圆方程的可解性及解分析
  • 批准号:
    19K03591
  • 财政年份:
    2019
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
  • 批准号:
    1812927
  • 财政年份:
    2018
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
  • 批准号:
    1812695
  • 财政年份:
    2018
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: Effective Numerical Algorithms and Software for Nonlinear Eigenvalue Problems
AF:小型:协作研究:非线性特征值问题的有效数值算法和软件
  • 批准号:
    1813480
  • 财政年份:
    2018
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Standard Grant
Algorithms for Large-Scale Nonlinear Eigenvalue Problems: Interpolation, Stability, Transient Dynamics
大规模非线性特征值问题的算法:插值、稳定性、瞬态动力学
  • 批准号:
    1720257
  • 财政年份:
    2017
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Standard Grant
New development of the nonlinear elliptic eigenvalue probelms and inverse bifurcation problems
非线性椭圆特征值问题与逆分岔问题的新进展
  • 批准号:
    17K05330
  • 财政年份:
    2017
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Verified numerical computation for solution to nonlinear eigenvalue problems arising from delay differential equation
时滞微分方程产生的非线性特征值问题的数值计算验证
  • 批准号:
    16K05270
  • 财政年份:
    2016
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
  • 批准号:
    1400555
  • 财政年份:
    2014
  • 资助金额:
    $ 155.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了