Scanning probe microscopy of the quantum Hall effect and charge pumping in graphene for meterological applications
用于计量应用的石墨烯量子霍尔效应和电荷泵的扫描探针显微镜
基本信息
- 批准号:EP/I029575/1
- 负责人:
- 金额:$ 44.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The bulk graphite which one finds at the core of a pencil is composed of many hundreds of layers of carbon atoms stacked on top of one another. It is this simple atomic architecture which makes graphite so easy to deposit when gently rubbed against another surface because the layers are free to slide over one another. It was discovered recently that this process even produces single atomic layers, i.e., tiny flakes of carbon which are only one atom thick. This flat allotrope of carbon is called graphene and has created enormous excitement since its discovery. It exhibits a remarkable number of new electronic, mechanical, and optical properties relevant to a wide range of device applications and fundamental research questions. The electronics community is particularly attracted to graphene because it combines high mobility, high transparency, and the ability to carry very high current densities. Recently the UK's meterological standards agency, the National Physical Laboratory (NPL), has shown that graphene can be used at low temperatures and at high magnetic fields as resistance standard as it shows the quantum Hall effect with very accurate plateau in the Hall resistance. Graphene is not yet competitive with the semiconducting material currently used to calibrate resistors, however, probably due to the level of disorder. The first objective of this project is to use low temperature scanning probe microscopy and chemical functionalisation to characterise and then reduce the disorder in these layers, thus improving the precision of the quantisation. In addition, the results of our characterisation should help those who grow the graphene layers to develop techniques for producing better quality material. Graphene's ability to conduct electricity cannot be switched on and off unless it is patterned so as to have widths less than 5 nm, so at the moment it is unsuitable for applications such as transistors in digital electronics. However, bilayer graphene, which consists of two layers one above the other, can be made insulating using a vertical electric field. The second part of our project aims to exploit this behaviour to control the path taken by electrons as they travel through graphene. In particular our aim is to channel electrons down small conducting pathways and into electron traps, known as quantum dots , where they are localised. Then, using high frequencies we will clock single electrons through the dot one at a time. The effect is to produce a current that is equal to the charge on the electron times the frequency that we clock them through the dot. This opens up the possibility of producing a well defined current that could be used as a standard for calibrating scientific instruments and for making very precise measurements of the fundamental constants of nature. In addition, because we are defining our quantum dots using the electric field from metal electrodes, the confinement potential should be very smooth and the scattering of the charge carriers off this potential should be specular. As a result, electrons will go through narrow channels without back scattering. This behaviour has not been seen in graphene yet, probably because devices designed so far have rough edges and a great deal of disorder with complex scattering properties. By using the bilayer gated devices we should be able to get rid of this scattering and increase the spin lifetime in graphene quantum dots, thereby opening up the tantalising prospect of using pencil lead as the basis for a quantum computer.
人们在铅笔核心发现的块状石墨是由数百层碳原子相互堆叠而成的。正是这种简单的原子结构使石墨在轻轻摩擦另一个表面时很容易沉积,因为这些层可以自由地相互滑动。最近发现,这一过程甚至会产生单原子层,即只有一个原子厚度的微小碳片。这种扁平的碳同素异形体被称为石墨烯,自从发现以来就引起了巨大的兴奋。它展示了与广泛的设备应用和基础研究问题相关的大量新的电子、机械和光学特性。电子界对石墨烯特别感兴趣,因为它结合了高流动性、高透明度和携带非常高的电流密度的能力。最近,英国的计量标准机构,国家物理实验室(NPL)表明,石墨烯可以在低温和高磁场下用作电阻标准,因为它在霍尔电阻中显示出非常精确的平台的量子霍尔效应。然而,石墨烯还不能与目前用于校准电阻的半导体材料竞争,这可能是由于无序程度的原因。这个项目的第一个目标是使用低温扫描探针显微镜和化学功能化来表征并减少这些层中的无序,从而提高量化的精度。此外,我们的表征结果应该有助于那些生长石墨烯层的人开发生产更高质量材料的技术。石墨烯的导电能力无法开启和关闭,除非它的图案宽度小于5纳米,因此目前它不适合数字电子中的晶体管等应用。然而,双层石墨烯由两层组成,一层在另一层之上,可以使用垂直电场使其绝缘。我们项目的第二部分旨在利用这种行为来控制电子通过石墨烯时的路径。特别是,我们的目标是引导电子沿着小的传导路径进入电子陷阱,即所谓的量子点,在那里它们是局域化的。然后,使用高频,我们将为通过圆点的单电子计时,一次一个。其效果是产生的电流等于电子上的电荷乘以我们对它们通过点的时钟频率的乘积。这样就有可能产生定义明确的电流,作为校准科学仪器和非常精确地测量自然基本常量的标准。此外,因为我们是使用金属电极的电场来定义量子点,所以限制势应该非常平滑,载流子在这个势上的散射应该是镜面反射的。因此,电子将在没有背向散射的情况下通过窄通道。这种行为还没有在石墨烯中看到,可能是因为到目前为止设计的设备具有粗糙的边缘和大量具有复杂散射特性的无序。通过使用双层门控器件,我们应该能够消除这种散射,并增加石墨烯量子点的自旋寿命,从而开辟了将铅笔作为量子计算机基础的诱人前景。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evidence for formation of multi-quantum dots in hydrogenated graphene.
- DOI:10.1186/1556-276x-7-459
- 发表时间:2012-08-16
- 期刊:
- 影响因子:0
- 作者:Chuang C;Puddy RK;Connolly MR;Lo ST;Lin HD;Chen TM;Smith CG;Liang CT
- 通讯作者:Liang CT
Magnetic-field-induced charge redistribution in disordered graphene double quantum dots
- DOI:10.1103/physrevb.92.155408
- 发表时间:2015-05
- 期刊:
- 影响因子:3.7
- 作者:K. Chiu;M. Connolly;A. Cresti;J. Griffiths;G. Jones;C. Smith
- 通讯作者:K. Chiu;M. Connolly;A. Cresti;J. Griffiths;G. Jones;C. Smith
Tilted potential induced coupling of localized states in a graphene nanoconstriction
- DOI:10.1103/physrevb.83.115441
- 发表时间:2011-03-23
- 期刊:
- 影响因子:3.7
- 作者:Connolly, M. R.;Chiu, K. L.;Smith, C. G.
- 通讯作者:Smith, C. G.
Experimental evidence for Efros-Shklovskii variable range hopping in hydrogenated graphene
- DOI:10.1016/j.ssc.2012.02.002
- 发表时间:2012-05-01
- 期刊:
- 影响因子:2.1
- 作者:Chuang, Chiashain;Puddy, R. K.;Liang, C. -T.
- 通讯作者:Liang, C. -T.
Reading and writing charge on graphene devices
石墨烯设备的读写充电
- DOI:10.1063/1.4732802
- 发表时间:2012
- 期刊:
- 影响因子:4
- 作者:Connolly M
- 通讯作者:Connolly M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Smith其他文献
Space Weather Underground: A Magnetometer Array with Educational Opportunities
地下空间天气:具有教育机会的磁力计阵列
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Charles Smith - 通讯作者:
Charles Smith
Evolution of field-aligned curren in the meridional plane during substorm: multipoint observations from satellites and ground stations
亚暴期间子午面场对准电流的演变:卫星和地面站的多点观测
- DOI:
10.1186/s40623-020-01182-6 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Shun Imajo;Masahito Nose;Mari Aida;Nana Higashio;Haruhisa Matsumoto;Koga Kiyokazu;Charles Smith;Robert J. MacDowall;Akimasa Yoshikawa - 通讯作者:
Akimasa Yoshikawa
Effects of female reproductive rate and mating design on genetic response and inbreeding in closed nucleus dairy herds
封闭核奶牛群中雌性繁殖率和交配设计对遗传反应和近交的影响
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
H. Leitch;Charles Smith;E. Burnside;M. Quinton - 通讯作者:
M. Quinton
Estimating regional forest cover in East Texas using Enhanced Thematic Mapper (ETM+) data
使用增强型专题制图器 (ETM) 数据估算德克萨斯州东部的区域森林覆盖率
- DOI:
10.1016/j.foreco.2005.08.033 - 发表时间:
2005 - 期刊:
- 影响因子:3.7
- 作者:
R. Sivanpillai;Charles Smith;R. Srinivasan;M. G. Messina;X. Wu - 通讯作者:
X. Wu
Directions for Future Research in Project Management: The Main Findings of an EPSRC Research Network
项目管理未来研究方向:EPSRC 研究网络的主要发现
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Mark Winter;Charles Smith;P. Morris;S. Cicmil - 通讯作者:
S. Cicmil
Charles Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Smith', 18)}}的其他基金
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Research Grant
DASI Track 2: Space Weather UnderGround (SWUG)
DASI 第 2 轨:地下空间天气 (SWUG)
- 批准号:
1933075 - 财政年份:2020
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
Multiplexed Quantum Integrated Circuits
多路复用量子集成电路
- 批准号:
EP/S019324/1 - 财政年份:2019
- 资助金额:
$ 44.57万 - 项目类别:
Research Grant
SHINE: Using the Solar Wind as a Turbulence Laboratory to Investigate the Role of Intermittency and Shear
SHINE:利用太阳风作为湍流实验室来研究间歇性和切变的作用
- 批准号:
1622413 - 财政年份:2016
- 资助金额:
$ 44.57万 - 项目类别:
Continuing Grant
NSWP: Automated Shock Analysis for Space Weather Predictions
NSWP:空间天气预报的自动冲击分析
- 批准号:
0921985 - 财政年份:2009
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
Introductory Computer Networking Laboratory
计算机网络入门实验室
- 批准号:
9850697 - 财政年份:1998
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
HF and Microwave Laboratory Improvement
高频和微波实验室改进
- 批准号:
9750676 - 财政年份:1997
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
Renovation of Engineering Science Building
工程科学楼改造
- 批准号:
9415141 - 财政年份:1995
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
Acquisition of Instrumentation for High Speed and MillimeterWave Measurements
购置高速和毫米波测量仪器
- 批准号:
9413774 - 财政年份:1994
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
Engineering Research Equipment Grant: Equipment for RF Measurements
工程研究设备补助金:射频测量设备
- 批准号:
8906315 - 财政年份:1989
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
相似国自然基金
发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
- 批准号:32371150
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
HER2特异性双抗原表位识别诊疗一体化探针研制与临床前诊疗效能研究
- 批准号:82372014
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
高效率单细胞分析微流控芯片的机理研究
- 批准号:31970754
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于诱导ES细胞定向分化的化合物库构建和信号转导分子事件发现
- 批准号:90813026
- 批准年份:2008
- 资助金额:60.0 万元
- 项目类别:重大研究计划
“后编码”荧光微/纳米颗粒探针制备及分析应用研究
- 批准号:20745004
- 批准年份:2007
- 资助金额:8.0 万元
- 项目类别:专项基金项目
同步辐射时间分辨技术及其应用研究
- 批准号:10635060
- 批准年份:2006
- 资助金额:220.0 万元
- 项目类别:重点项目
相似海外基金
Local probing and imaging of spin wave propagating in a magnetic domain wall via scanning diamond NV probe microscopy
通过扫描金刚石 NV 探针显微镜对磁畴壁中传播的自旋波进行局部探测和成像
- 批准号:
24K17580 - 财政年份:2024
- 资助金额:
$ 44.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing image quality improvement of a new Scanning Probe Microscopy imaging mode.
评估新扫描探针显微镜成像模式的图像质量改进。
- 批准号:
10039804 - 财政年份:2023
- 资助金额:
$ 44.57万 - 项目类别:
Collaborative R&D
PFI-TT: Active Acoustic Noise Cancellation and Control for Scanning Probe Microscopy
PFI-TT:扫描探针显微镜的主动声学噪声消除和控制
- 批准号:
2234449 - 财政年份:2023
- 资助金额:
$ 44.57万 - 项目类别:
Standard Grant
Probing molecular interactions on soft surfaces by scanning probe microscopy
通过扫描探针显微镜探测软表面上的分子相互作用
- 批准号:
RGPIN-2020-05700 - 财政年份:2022
- 资助金额:
$ 44.57万 - 项目类别:
Discovery Grants Program - Individual
Scanning Probe Microscopy of Polymer, Biopolymer and Semicrystalline Surface Nanostructures
聚合物、生物聚合物和半晶表面纳米结构的扫描探针显微镜
- 批准号:
RGPIN-2022-04790 - 财政年份:2022
- 资助金额:
$ 44.57万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Study of Electronic and Magnetic Topological Phenomena in Two Dimensional Quantum Materials with Scanning Probe Microscopy
职业:利用扫描探针显微镜研究二维量子材料中的电子和磁拓扑现象
- 批准号:
2145735 - 财政年份:2022
- 资助金额:
$ 44.57万 - 项目类别:
Continuing Grant
A scanning quantum probe microscopy suite to boost the development of quantum circuits
扫描量子探针显微镜套件可促进量子电路的发展
- 批准号:
EP/W027526/1 - 财政年份:2022
- 资助金额:
$ 44.57万 - 项目类别:
Fellowship
Scanning Probe Microscopy development and applications for time resolved structure-function studies
扫描探针显微镜的开发和时间分辨结构功能研究的应用
- 批准号:
RGPIN-2021-02666 - 财政年份:2022
- 资助金额:
$ 44.57万 - 项目类别:
Discovery Grants Program - Individual
Novel scanning probe microscopy methods to reveal solid-liquid-gas three-phase contact lines
新型扫描探针显微镜方法揭示固-液-气三相接触线
- 批准号:
22K18772 - 财政年份:2022
- 资助金额:
$ 44.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Scanning Probe Microscopy Using Precise Force Detection
使用精确力检测的扫描探针显微镜的开发
- 批准号:
21K18162 - 财政年份:2021
- 资助金额:
$ 44.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)














{{item.name}}会员




