On a Robust Approach for Stochastic Equilibrium Problems

随机平衡问题的鲁棒方法

基本信息

  • 批准号:
    EP/J014427/1
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Stochastic programming has been extensively used by operation researchers, economists and various decision makers/practitioners to model optimal decision making in economics, management, engineering, transportation networks and the environment. When a decision problem involves not only uncertainty, but also severaldecision makers who are in a competitive relationship, it becomes a stochastic game. An important approach in understanding such a game is to look at the equilibrium outcomes. These are the set of possible outcomes atthe end of competition, given that each player seeks to optimize their own payoff.A fundamental issue in stochastic programming and equilibrium concerns the representation ofuncertainty. Many of the models in the literature assume complete knowledge of the distributions of random variables (representing the uncertainty). Inmany practical cases, however, such distributions are not known precisely and have to be either estimated from historical data or constructed usingsubjective judgements. The available information is often insufficient to give confidence in the distribution identified. In the absence of full information on the underlying distribution, it may still be possible toidentify a set of possible probability distributions within which the true distribution lies. While a robust optimization approach to this problem isbased on making the decision that would be appropriate given the worst probability distribution in the set of possible distributions, robust analysis of stochastic equilibrium is to look into worst equilibrium outcomes given the incomplete information of the underlying stochastic elements and robust designrequires one to set out optimal policy/parameters which accommodate any worst equilibrium outcomes.The project is proposed to develop a mathematical framework that allows one to carry out robust anaysis of a stochastic equilibrium problem with incomplete information on the underlying uncertainty, identify optimal policy/design which accommodate the worst possible equilibrium outcomes, develop efficient numerical methods for solving the new mathematical models and apply apply them to some interesting practical problems in economics and engineering with a particular focus on energy industry.
随机规划已被广泛使用的操作研究人员,经济学家和各种决策者/从业者在经济,管理,工程,交通网络和环境的最佳决策模型。当一个决策问题不仅涉及不确定性,而且涉及多个处于竞争关系的决策者时,它就成为一个随机博弈。理解这样一个博弈的一个重要方法是看均衡结果。这些是在竞争结束时的一组可能的结果,假设每个参与者都寻求优化自己的收益。随机规划和均衡中的一个基本问题涉及不确定性的表示。文献中的许多模型假设完全了解随机变量的分布(表示不确定性)。然而,在许多实际情况下,这种分布并不精确,必须从历史数据中估计或使用主观判断构建。现有资料往往不足以使人相信所确定的分布情况。在缺乏关于潜在分布的完整信息的情况下,仍然有可能确定一组可能的概率分布,真实分布位于其中。虽然对这个问题的鲁棒优化方法是基于在给定可能分布集中的最差概率分布的情况下做出适当的决策,随机均衡的鲁棒分析是考虑潜在随机元素的不完全信息的最坏均衡结果,鲁棒设计要求制定最优策略。该项目提出了一个数学框架,允许一个进行强大的分析的随机平衡问题与不完全信息的基本不确定性,确定最佳的政策/设计,以适应最坏的可能的均衡结果,开发有效的数值方法来解决新的数学模型,并将其应用于经济和工程中的一些有趣的实际问题,特别是能源行业。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributionally Robust Equilibrium for Continuous Games: Nash-Cournot models and Stackelberg Models
连续博弈的分布鲁棒均衡:Nash-Cournot 模型和 Stackelberg 模型
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Liu
  • 通讯作者:
    Y. Liu
CVaR Approximations for Minimax and Robust Convex Optimization
Minimax 和鲁棒凸优化的 CVaR 近似
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huifu Xu (Author)
  • 通讯作者:
    Huifu Xu (Author)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huifu Xu其他文献

Stochastic Approximation Approaches to the
随机逼近方法
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stochastic Variational;Inequality Problem;Houyuan Jiang;Huifu Xu
  • 通讯作者:
    Huifu Xu
A modified late arrival penalized user equilibrium model and robustness in data perturbation
一种修正的晚到惩罚用户均衡模型及其在数据扰动下的稳健性
Preference ambiguity and robustness in multistage decision making
  • DOI:
    10.1007/s10107-025-02208-1
  • 发表时间:
    2025-04-16
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Jia Liu;Zhiping Chen;Huifu Xu
  • 通讯作者:
    Huifu Xu
Robust spectral risk optimization when the subjective risk aversion is ambiguous: a moment-type approach
主观风险厌恶不明确时的鲁棒谱风险优化:矩型方法
  • DOI:
    10.1007/s10107-021-01630-5
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Shaoyan Guo;Huifu Xu
  • 通讯作者:
    Huifu Xu
Stochastic penalty function methods for nonsmooth constrained minimization
非光滑约束最小化的随机罚函数方法
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huifu Xu
  • 通讯作者:
    Huifu Xu

Huifu Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huifu Xu', 18)}}的其他基金

Distributionally Robust Optimisation With Matrix Moment Constraints: A Semi-Infinite and Semi-Definite Programming Approach
具有矩阵矩约束的分布鲁棒优化:半无限半定规划方法
  • 批准号:
    EP/M003191/2
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Grant
Distributionally Robust Optimisation With Matrix Moment Constraints: A Semi-Infinite and Semi-Definite Programming Approach
具有矩阵矩约束的分布鲁棒优化:半无限半定规划方法
  • 批准号:
    EP/M003191/1
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Grant
A Stochastic Approach for Empirical Analyses of Urban/Traffic Models with Multiple Equilibria
多重均衡城市/交通模型实证分析的随机方法
  • 批准号:
    22K04347
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reduced-order modelling of jet noise using a map-based stochastic turbulence approach
使用基于地图的随机湍流方法对喷气噪声进行降阶建模
  • 批准号:
    470140627
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    WBP Position
An Integrated Stochastic Approach to Structural Health Monitoring
结构健康监测的综合随机方法
  • 批准号:
    534159-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Asset and liability management: A stochastic control approach
资产和负债管理:随机控制方法
  • 批准号:
    RGPIN-2016-05677
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Reduced-order modelling of jet noise using a map-based stochastic turbulence approach
使用基于地图的随机湍流方法对喷气噪声进行降阶建模
  • 批准号:
    470140694
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    WBP Fellowship
Stochastic Control-Theoretic Approach to Development of Simultaneously Cyber-Secure and Energy-Efficient Randomized Transmission Methods for Dependable IoT
用于开发同时网络安全和节能的可靠物联网随机传输方法的随机控制理论方法
  • 批准号:
    20K14771
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
  • 批准号:
    530985-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding the causes of DNA methylation response to methylmercury: a novel approach to quantify genetic, environmental, and stochastic factors
了解 DNA 甲基化对甲基汞反应的原因:一种量化遗传、环境和随机因素的新方法
  • 批准号:
    10039951
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
Understanding the causes of DNA methylation response to methylmercury: a novel approach to quantify genetic, environmental, and stochastic factors
了解 DNA 甲基化对甲基汞反应的原因:一种量化遗传、环境和随机因素的新方法
  • 批准号:
    10452549
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了