Advancing the Geometric Framework for Computational Statistics: Theory, Methodology and Modern Day Applications
推进计算统计的几何框架:理论、方法论和现代应用
基本信息
- 批准号:EP/J016934/2
- 负责人:
- 金额:$ 73.12万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The vision of this research is to formalise the geometric foundations of computational statistics and provide the tools and analytic results required to realise the ambition of developing the advanced statistical methodology that is essential to address emerging inference problems of major importance across the sciences and industry. As ever more demanding and ambitious applications of existing statistical inference methods are being considered, the capabilities of computational statistics tools are constantly being stretched, often beyond what is practically feasible. For example the potential to gain insights into the mechanisms of cellular function, elucidating ecological dynamics; improving neurological diagnostics, and uncovering the deep mysteries of the cosmos are only some of the ongoing scientific studies that are heavily reliant on statistical inference methods and are placing unparalleled demand on the current capabilities of available statistical methodology. This situation motivates continual innovation in the development of statistical methods for the quantification of uncertainty. The aim of this proposed research is to be more ambitious and go much further in establishing a novel paradigm that underpins the advancement of next generation computational statistical methods by formalising and developing advanced Monte Carlo methods. The geometric foundations of computational statistics will be formalised within this proposed research in a way that reaches beyond traditional interfaces between statistical and mathematical sciences.
本研究的愿景是形式化计算统计学的几何基础,并提供实现开发先进统计方法所需的工具和分析结果,这对于解决科学和工业中重要的新兴推理问题至关重要。随着对现有统计推断方法的要求越来越高、应用越来越广泛,计算统计工具的能力不断得到扩展,往往超出了实际可行的范围。例如,有可能深入了解细胞功能的机制,阐明生态动力学;改进神经学诊断和揭示宇宙的深层奥秘只是正在进行的科学研究的一部分,这些研究严重依赖于统计推断方法,并对现有统计方法的能力提出了前所未有的要求。这种情况促使不确定性量化统计方法的不断创新。这项拟议研究的目的是更加雄心勃勃,并进一步建立一种新的范式,通过形式化和开发先进的蒙特卡罗方法来支持下一代计算统计方法的进步。计算统计学的几何基础将在这个提议的研究中以一种超越统计和数学科学之间传统接口的方式形式化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adiabatic Monte Carlo
绝热蒙特卡罗
- DOI:10.48550/arxiv.1405.3489
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Betancourt M. J.
- 通讯作者:Betancourt M. J.
Optimizing The Integrator Step Size for Hamiltonian Monte Carlo
优化哈密顿蒙特卡罗积分器步长
- DOI:10.48550/arxiv.1411.6669
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Betancourt M. J.
- 通讯作者:Betancourt M. J.
Geometric MCMC for infinite-dimensional inverse problems
- DOI:10.1016/j.jcp.2016.12.041
- 发表时间:2017-04-15
- 期刊:
- 影响因子:4.1
- 作者:Beskos, Alexandros;Girolami, Mark;Stuart, Andrew M.
- 通讯作者:Stuart, Andrew M.
The Fundamental Incompatibility of Hamiltonian Monte Carlo and Data Subsampling
哈密顿蒙特卡罗与数据子采样的根本不兼容性
- DOI:10.48550/arxiv.1502.01510
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Betancourt M. J.
- 通讯作者:Betancourt M. J.
Identifying the Optimal Integration Time in Hamiltonian Monte Carlo
确定哈密顿蒙特卡罗中的最佳积分时间
- DOI:10.48550/arxiv.1601.00225
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Betancourt Michael
- 通讯作者:Betancourt Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Girolami其他文献
Error analysis for a statistical finite element method
统计有限元方法的误差分析
- DOI:
10.1016/j.jmva.2025.105468 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:1.700
- 作者:
Toni Karvonen;Fehmi Cirak;Mark Girolami - 通讯作者:
Mark Girolami
Generative broad Bayesian (GBB) imputer for missing data imputation with uncertainty quantification
- DOI:
10.1016/j.knosys.2024.112272 - 发表时间:
2024-10-09 - 期刊:
- 影响因子:
- 作者:
Sin-Chi Kuok;Ka-Veng Yuen;Tim Dodwell;Mark Girolami - 通讯作者:
Mark Girolami
Bayesian generative kernel Gaussian process regression
贝叶斯生成核高斯过程回归
- DOI:
10.1016/j.ymssp.2025.112395 - 发表时间:
2025-03-15 - 期刊:
- 影响因子:8.900
- 作者:
Sin-Chi Kuok;Shuang-Ao Yao;Ka-Veng Yuen;Wang-Ji Yan;Mark Girolami - 通讯作者:
Mark Girolami
Collaborative prognosis using a Weibull statistical hierarchical model
使用威布尔统计层次模型的协作预后
- DOI:
10.1016/j.ress.2025.111110 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:11.000
- 作者:
Maharshi Dhada;Lawrence Bull;Mark Girolami;Ajith Parlikad - 通讯作者:
Ajith Parlikad
Active learning informed proper orthogonal decomposition for reduced order modelling of heat transfer in porous medium
用于多孔介质中传热降阶建模的主动学习信息的本征正交分解
- DOI:
10.1016/j.cma.2025.118174 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:7.300
- 作者:
Pin Zhang;Brian Sheil;Mark Girolami - 通讯作者:
Mark Girolami
Mark Girolami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Girolami', 18)}}的其他基金
Inference, COmputation and Numerics for Insights into Cities (ICONIC)
洞察城市的推理、计算和数值 (ICONIC)
- 批准号:
EP/P020720/2 - 财政年份:2019
- 资助金额:
$ 73.12万 - 项目类别:
Research Grant
Semantic Information Pursuit for Multimodal Data Analysis
多模态数据分析的语义信息追踪
- 批准号:
EP/R018413/2 - 财政年份:2019
- 资助金额:
$ 73.12万 - 项目类别:
Research Grant
Semantic Information Pursuit for Multimodal Data Analysis
多模态数据分析的语义信息追踪
- 批准号:
EP/R018413/1 - 财政年份:2018
- 资助金额:
$ 73.12万 - 项目类别:
Research Grant
Inference, COmputation and Numerics for Insights into Cities (ICONIC)
洞察城市的推理、计算和数值 (ICONIC)
- 批准号:
EP/P020720/1 - 财政年份:2017
- 资助金额:
$ 73.12万 - 项目类别:
Research Grant
Advancing the Geometric Framework for Computational Statistics: Theory, Methodology and Modern Day Applications
推进计算统计的几何框架:理论、方法论和现代应用
- 批准号:
EP/J016934/3 - 财政年份:2016
- 资助金额:
$ 73.12万 - 项目类别:
Fellowship
Network on Computational Statistics and Machine Learning
计算统计和机器学习网络
- 批准号:
EP/K009788/2 - 财政年份:2014
- 资助金额:
$ 73.12万 - 项目类别:
Research Grant
ENGAGE : Interactive Machine Learning Accelerating Progress in Science, An Emerging Theme of ICT Research
ENGAGE:交互式机器学习加速科学进步,ICT 研究的新兴主题
- 批准号:
EP/K015664/2 - 财政年份:2014
- 资助金额:
$ 73.12万 - 项目类别:
Research Grant
Advancing the Geometric Framework for Computational Statistics: Theory, Methodology and Modern Day Applications
推进计算统计的几何框架:理论、方法论和现代应用
- 批准号:
EP/J016934/1 - 财政年份:2013
- 资助金额:
$ 73.12万 - 项目类别:
Fellowship
Network on Computational Statistics and Machine Learning
计算统计和机器学习网络
- 批准号:
EP/K009788/1 - 财政年份:2013
- 资助金额:
$ 73.12万 - 项目类别:
Research Grant
ENGAGE : Interactive Machine Learning Accelerating Progress in Science, An Emerging Theme of ICT Research
ENGAGE:交互式机器学习加速科学进步,ICT 研究的新兴主题
- 批准号:
EP/K015664/1 - 财政年份:2013
- 资助金额:
$ 73.12万 - 项目类别:
Research Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
A Universal Framework for Geometric Information in Product Development
产品开发中几何信息的通用框架
- 批准号:
2312175 - 财政年份:2023
- 资助金额:
$ 73.12万 - 项目类别:
Standard Grant
A geometric framework approach to understand multi-metal toxicity on individual organisms to evaluate relative risks and benefits of pollution and mit
一种几何框架方法,用于了解多金属对个体生物体的毒性,以评估污染和减排的相对风险和效益
- 批准号:
2881375 - 财政年份:2023
- 资助金额:
$ 73.12万 - 项目类别:
Studentship
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
- 批准号:
2106672 - 财政年份:2021
- 资助金额:
$ 73.12万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
- 批准号:
2106578 - 财政年份:2021
- 资助金额:
$ 73.12万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
- 批准号:
2107434 - 财政年份:2021
- 资助金额:
$ 73.12万 - 项目类别:
Continuing Grant
A mechano-geometric framework to characterize macromolecular ensembles
表征大分子整体的力学几何框架
- 批准号:
401512690 - 财政年份:2019
- 资助金额:
$ 73.12万 - 项目类别:
Research Grants
A General and Efficient Framework for Computational Shape Analysis Through Geometric Distributions
通过几何分布进行计算形状分析的通用且有效的框架
- 批准号:
1819131 - 财政年份:2018
- 资助金额:
$ 73.12万 - 项目类别:
Standard Grant
CAREER: Bridging Geometric Design and Aerodynamic Simulation of Turbomachinery: An Integrative Design-Through-Analysis Framework Enabled by Embedded Domain Methods
职业:桥接涡轮机械的几何设计和空气动力仿真:嵌入式域方法支持的集成设计分析框架
- 批准号:
1651577 - 财政年份:2017
- 资助金额:
$ 73.12万 - 项目类别:
Standard Grant
A spectral geometric framework for 3D shape analysis and applications
用于 3D 形状分析和应用的光谱几何框架
- 批准号:
311656-2013 - 财政年份:2017
- 资助金额:
$ 73.12万 - 项目类别:
Discovery Grants Program - Individual
A Geometric Control Framework for Enabling Behavior-Based Planning and Locomotion of Undulatory Robots
用于实现基于行为的波动机器人规划和运动的几何控制框架
- 批准号:
1562911 - 财政年份:2016
- 资助金额:
$ 73.12万 - 项目类别:
Standard Grant