TRANSDUCTION MECHANISM OF VERTEBRATE HAIR CELLS

脊椎动物毛细胞的转导机制

基本信息

项目摘要

The least understood process of the inner ear, the transduction of mechanical stimuli into electrical responses, is also the stage at which severe pathology of the auditory and vestibular systems most often arises. We propose to employ the techniques of cell biology and membrane biophysics to investigate how transduction normally operates and how it is affected by a clinically important class of ototoxic agents, the aminoglycoside antibiotics. These studies will contribute to an understanding of transduction which, in the long term, will aid in the rational design of prophylaxis or treatment for conditions such as aminoglycoside ototoxicity, acoustic trauma, presbyacusis, and Meniere's disease. Hair cells from the bullfrog's inner ear will be maintained in vitro either within the saccular epithelium or as solitary cells dissociated by enzymes. The relationship between deflection of a cell's mechanosensitive hair bundle and the resultant receptor potential and membrane conductance changes will be carefully studied with stimuli of a variety of frequencies, amplitudes, and waveforms. The results will be of value in modeling the operation of less accessible organs such as the mammalian cochlea and vestibular apparatus. The subcellular site at which transduction occurs will be sought both by measuring the pattern of current flow around the hair bundle and by localizing the influx of calcium ion through activated transduction channels. The permeability of the transducer's ionic channel will be plumbed with radioactive tris(hydroxymethyl) aminomethane, an ion whose intracellular accumulation may also serve to label stimulated hair cells. As a step toward elucidation of the mechanism whereby aminoglycoside antibiotics damage hair cells, the site of action and binding kinetics of these drugs will be determined. It should be possible to learn whether ototoxic antibiotics interfere with cellular metabolism or exert their effects upon binding to a membrane receptor. Voltage-clamp experiments will be performed on isolated hair cells in order to estimate the conductance of individual transduction channels and to identify other membrane conductance mechanisms that affect the form of the receptor potential.
内耳最不为人所知的过程, 机械刺激转化为电反应,也是一个阶段, 听觉和前庭系统的严重病变最经常出现。 我们建议采用细胞生物学和膜生物物理学技术 研究转导如何正常运作,以及它如何受到 一种临床上重要的耳毒性药物,氨基糖苷类 抗生素 这些研究将有助于了解 从长远来看,这将有助于合理设计 预防或治疗诸如氨基糖苷类耳毒性的病症, 听觉创伤、老年性聋和梅尼埃病。 毛细胞来自 牛蛙的内耳将保持在体外, 上皮细胞或由酶解离的孤立细胞。 的关系 细胞的机械敏感毛束的偏转和 由此产生的受体电位和膜电导的变化将是 仔细研究了各种频率、振幅和 波形 其结果将在建模少的操作的价值 哺乳动物的耳蜗和前庭器官等可接近的器官。 转导发生的亚细胞位点将通过以下两种方法来寻找: 测量围绕所述发束的电流模式, 通过激活转导定位钙离子内流 渠道 换能器离子通道的渗透性将是 放射性三(羟甲基)氨基甲烷,一种离子, 细胞内积累也可用于标记受刺激的毛细胞。 作为阐明氨基糖苷类药物 抗生素损伤毛细胞,作用部位和结合动力学 这些药物将被确定。 应该可以了解到 耳毒性抗生素干扰细胞代谢或发挥其 对膜受体结合的影响。 电压钳实验 将在分离的毛细胞上进行,以估计 个别转导通道的电导,并确定其他 影响受体形式的膜传导机制 潜力

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALBERT JAMES HUDSPETH其他文献

ALBERT JAMES HUDSPETH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALBERT JAMES HUDSPETH', 18)}}的其他基金

STRUCTURE AND FUNCTION OF THE OUTER HAIR CELL MOTOR PROTEIN, PRESTIN
外毛细胞运动蛋白 PRESTIN 的结构和功能
  • 批准号:
    8361580
  • 财政年份:
    2011
  • 资助金额:
    $ 14.98万
  • 项目类别:
Gene-Expression Patterns During Hair-Cell Regeneration
毛细胞再生过程中的基因表达模式
  • 批准号:
    7817295
  • 财政年份:
    2009
  • 资助金额:
    $ 14.98万
  • 项目类别:
Transduction Mechanism of Hair Cells
毛细胞的转导机制
  • 批准号:
    7844120
  • 财政年份:
    2009
  • 资助金额:
    $ 14.98万
  • 项目类别:
Gene-Expression Patterns During Hair-Cell Regeneration
毛细胞再生过程中的基因表达模式
  • 批准号:
    7933790
  • 财政年份:
    2009
  • 资助金额:
    $ 14.98万
  • 项目类别:
ION CHANNELS AND DEVELOPMENT OF HAIR CELLS
离子通道和毛细胞的发育
  • 批准号:
    6516058
  • 财政年份:
    1989
  • 资助金额:
    $ 14.98万
  • 项目类别:
IONIC CHANNELS OF HAIR CELLS
毛细胞的离子通道
  • 批准号:
    2125437
  • 财政年份:
    1989
  • 资助金额:
    $ 14.98万
  • 项目类别:
IONIC CHANNELS OF HAIR CELLS
毛细胞的离子通道
  • 批准号:
    2125438
  • 财政年份:
    1989
  • 资助金额:
    $ 14.98万
  • 项目类别:
IONIC CHANNELS OF HAIR CELLS
毛细胞的离子通道
  • 批准号:
    3216544
  • 财政年份:
    1989
  • 资助金额:
    $ 14.98万
  • 项目类别:
IONIC CHANNELS OF HAIR CELLS
毛细胞的离子通道
  • 批准号:
    2125435
  • 财政年份:
    1989
  • 资助金额:
    $ 14.98万
  • 项目类别:
IONIC CHANNELS OF HAIR CELLS
毛细胞的离子通道
  • 批准号:
    3216543
  • 财政年份:
    1989
  • 资助金额:
    $ 14.98万
  • 项目类别:

相似海外基金

Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
  • 批准号:
    2902098
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
  • 批准号:
    EP/Z533026/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
  • 批准号:
    BB/Y004035/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Research Grant
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
  • 批准号:
    EP/Y023528/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
  • 批准号:
    FT230100468
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    ARC Future Fellowships
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
  • 批准号:
    BB/Y007611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
  • 批准号:
    MR/Y033809/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
  • 批准号:
    494853
  • 财政年份:
    2023
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
  • 批准号:
    2884862
  • 财政年份:
    2023
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
  • 批准号:
    2904356
  • 财政年份:
    2023
  • 资助金额:
    $ 14.98万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了