Graphene Flexible Electronics and Optoelectronics: Bridging The Gap Between Academia and Industry

石墨烯柔性电子和光电:弥合学术界和工业界之间的差距

基本信息

  • 批准号:
    EP/K017144/1
  • 负责人:
  • 金额:
    $ 877.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Graphene has many record properties. It is transparent like (or better than) plastic, but conducts heat and electricity better than any metal, it is an elastic thin film, behaves as an impermeable membrane, and it is chemically inert and stable. Thus it is ideal for the production of next generation transparent conductors. Thin and flexible graphene-based electronic components may be obtained and modularly integrated, and thin portable devices may be assembled and distributed. Graphene can withstand dramatic mechanical deformation, for instance it can be folded without breaking. Foldable devices can be imagined, together with a wealth of new form factors, with innovative concepts of integration and distribution. At present, the realisation of an electronic device (such as, e.g., a mobile phone) requires the assembly of a variety of components obtained by many technologies. Graphene, by including different properties within the same material, can offer the opportunity to build a comprehensive technological platform for the realisation of almost any device component, including transistors, batteries, optoelectronic components, photovoltaic cells, (photo)detectors, ultrafast lasers, bio- and physicochemical sensors, etc. Such a change in the paradigm of device manufacturing would revolutionise the global industry. UK will have the chance to re-acquire a prominent position within the global Information and Communication Technology industry, by exploiting the synergy of excellent researchers and manufacturers. Our vision is to take graphene from a state of raw potential to a point where it can revolutionise flexible, wearable and transparent (opto)electronics, with a manifold return for UK, in innovation and exploitation. Graphene has benefits both in terms of cost-advantage, and uniqueness of attributes and performance. It will enable cheap, energy autonomous and disposable devices and communication systems, integrated in transparent and flexible surfaces, with application to smart homes, industrial processes, environmental monitoring, personal healthcare and more. This will lead to ultimate device wearability, new user interfaces and novel interaction paradigms, with new opportunities in communication, gaming, media, social networking, sport and wellness. By enabling flexible (opto)electronics, graphene will allow the exploitation of the existing knowledge base and infrastructure of companies working on organic electronics (organic LEDs, conductive polymers, printable electronics), and a unique synergistic framework for collecting and underpinning many distributed technical competences. The strategic focus of the proposed Cambridge Graphene Centre will be in activities built around the central challenge of flexible and energy efficient (opto)electronics, for which graphene is a unique enabling platform. This will allow us to 1) grow and produce graphene by chemical vapour deposition and liquid phase exfoliation on large scale; 2) prepare and test inks, up to a controlled and closely monitored pilot line. The target is several litres per week of optimized solutions and inks, ready to be provided to present and future partners for testing in their plants; 3) design, test and produce a variety of flexible, antennas, detectors and RF devices based on graphene and related materials, covering all present and future wavelength ranges; 4) prototype and test flexible batteries and supercapacitors and package them for implementation in realistic devices. Our present and future industrial partners will be able to conduct pilot-phase research and device prototyping in this facility, before moving to larger scale testing in realistic industrial settings. Spin-off companies will be incubated, and start-ups will be able to contract their more fundamental work to this facility.
石墨烯具有许多记录特性。它像塑料一样透明(或比塑料更透明),但比任何金属都能更好地导热和导电,它是一种弹性薄膜,表现为不可渗透的膜,并且它是化学惰性和稳定的。因此,它是生产下一代透明导体的理想选择。可以获得薄且柔性的基于石墨烯的电子部件并将其模块化集成,并且可以组装和分配薄的便携式装置。石墨烯可以承受剧烈的机械变形,例如它可以折叠而不会断裂。可折叠设备可以想象,连同丰富的新的形式因素,与创新的概念,集成和分布。 目前,电子设备(例如,移动的电话)需要组装通过许多技术获得的各种部件。石墨烯通过在同一材料中包含不同的特性,可以为几乎任何设备组件的实现提供全面的技术平台,包括晶体管,电池,光电组件,光伏电池,(光)探测器,超快激光器,生物和物理化学传感器等。英国将有机会通过利用优秀研究人员和制造商的协同作用,重新获得全球信息和通信技术行业的突出地位。我们的愿景是将石墨烯从原始潜力状态提升到可以彻底改变柔性,可穿戴和透明(光)电子产品的程度,为英国带来创新和开发的多方面回报。石墨烯在成本优势以及属性和性能的独特性方面都有好处。它将使廉价,能源自主和一次性设备和通信系统集成在透明和灵活的表面上,应用于智能家居,工业过程,环境监测,个人医疗保健等。这将带来终极的设备可穿戴性、新的用户界面和新颖的交互模式,并在通信、游戏、媒体、社交网络、体育和健康方面带来新的机会。通过实现灵活的(光)电子产品,石墨烯将允许利用有机电子产品(有机LED,导电聚合物,可印刷电子产品)公司的现有知识库和基础设施,以及收集和支持许多分布式技术能力的独特协同框架。拟议的剑桥石墨烯中心的战略重点将是围绕灵活和节能(光)电子的核心挑战而开展的活动,石墨烯是一个独特的使能平台。这将使我们能够:1)通过化学气相沉积和液相剥离大规模生长和生产石墨烯; 2)制备和测试墨水,直到控制和密切监测的中试生产线。目标是每周提供几升优化的解决方案和油墨,随时准备提供给现在和未来的合作伙伴,以便在他们的工厂进行测试; 3)设计、测试和生产各种基于石墨烯和相关材料的柔性天线、探测器和RF设备,覆盖所有现在和未来的波长范围; 4)原型和测试柔性电池和超级电容器,并将其包装以在现实设备中实现。我们现在和未来的工业合作伙伴将能够在该设施中进行中试阶段研究和设备原型设计,然后在现实的工业环境中进行更大规模的测试。分拆公司将被孵化,初创企业将能够将其更基础的工作承包给这个设施。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time.
  • DOI:
    10.1021/acsnano.1c06432
  • 发表时间:
    2021-11-23
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Asgari M;Riccardi E;Balci O;De Fazio D;Shinde SM;Zhang J;Mignuzzi S;Koppens FHL;Ferrari AC;Viti L;Vitiello MS
  • 通讯作者:
    Vitiello MS
Terahertz photodetection in scalable single-layer-graphene and hexagonal boron nitride heterostructures
  • DOI:
    10.1063/5.0097726
  • 发表时间:
    2022-07-18
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Asgari, M.;Viti, L.;Vitiello, M. S.
  • 通讯作者:
    Vitiello, M. S.
Graphene-black phosphorus printed photodetectors
  • DOI:
    10.1088/2053-1583/acc74c
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Akhavan, S.;Ruocco, A.;Ferrari, A. C.
  • 通讯作者:
    Ferrari, A. C.
Transport conductivity of graphene at RF and microwave frequencies
  • DOI:
    10.1088/2053-1583/3/1/015010
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Awan, S. A.;Lombardo, A.;Ferrari, A. C.
  • 通讯作者:
    Ferrari, A. C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Ferrari其他文献

Harnessing the Power of Metabarcoding in the Ecological Interpretation of Plant-Pollinator DNA Data: Strategies and Consequences of Filtering Approaches
利用元条形码的力量对植物传粉媒介 DNA 数据进行生态解释:过滤方法的策略和后果
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Tommasi;Andrea Ferrari;M. Labra;A. Galimberti;P. Biella
  • 通讯作者:
    P. Biella
The use of Matrigel at low concentration enhances in vitro blastocyst formation and hatching in a mouse embryo model.
使用低浓度的基质胶可增强小鼠胚胎模型中的体外囊胚形成和孵化。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    L. Lazzaroni;F. Fusi;N. Doldi;Andrea Ferrari
  • 通讯作者:
    Andrea Ferrari
Three-phase equilibrium in a GPU-based compositional reservoir simulator
  • DOI:
    10.1007/s10596-025-10369-3
  • 发表时间:
    2025-07-18
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Paola Panfili;Leonardo Patacchini;Andrea Ferrari;Kenneth Esler;Alberto Cominelli
  • 通讯作者:
    Alberto Cominelli
A joint international consensus statement for measuring quality of survival for patients with childhood cancer
衡量儿童癌症患者生存质量的联合国际共识声明
  • DOI:
    10.1038/s41591-023-02339-y
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    82.9
  • 作者:
    Rebecca J. van Kalsbeek;M. Hudson;R. L. Mulder;M. Ehrhardt;D. Green;D. Mulrooney;Jessica Hakkert;J. den Hartogh;A. Nijenhuis;H. V. van Santen;A. S. Schouten;Harm van Tinteren;L. Verbruggen;H. Conklin;L. Jacola;R. Webster;M. Partanen;W. Kollen;M. Grootenhuis;R. Pieters;L. Kremer;Rebecca J. Jaap Hanneke M. Harm Femke Madeleine Traci Chan van Kalsbeek den Hartogh van Santen van Tinteren A;Rebecca J. van Kalsbeek;J. den Hartogh;H. V. van Santen;Harm van Tinteren;F. Aarsen;Madeleine Adams;Traci Adams;Chantal van den Akker;Roland Amman;Shekinah J Andrews;Greg Armstrong;Andishe Atterbaschi;Amedeo A Azizi;K. van Baarsen;Simon Bailey;Justin Baker;Lisa Bakker;Laura R. Beek;Peter Bekkering;Janneke van den Bergen;Esther M. M. van den Bergh;M. Bierings;Michael Bishop;G. Bisogno;John Boatner;Saskia Boerboom;Judith de Bont;F. Boop;C. van den Bos;Eric Bouffet;Rick Brandsma;Ida Bremer Ophorst;Bernadette Brennan;Rachel C. Brennan;D. Bresters;Sippy ten Brink;L. Brugières;Birgit Burkhardt;Gabriele Calaminus;F. Calkoen;Kristin E. Canavera;Leeann Carmichael;Sharon M Castellino;M. Cepelova;W. Chemaitilly;Julia Chisholm;Karen Clark;Debbie Crom;Amanda Curry;Brian M. DeFeo;Jennifer van Dijk;Stephanie B. Dixon;Jeffrey Dome;Jean Donadieu;Babet L Drenth;Carlo Dufour;Adam Esbenshade;G. Escherich;T. Fay;C. Faure;Andrea Ferrari;J. Flerlage;Kayla Foster;Lindsay Frazier;Wayne Furman;Carlos Galindo;Hoong;Jessica A. Gartrell;James I. Geller;C. Gidding;Jan Godzinsky;B. Goemans;R. Gorlick;Rinske Graafland;Norbert Graf;M. van Grotel;Marjolein ter Haar;V. de Haas;M. Hagleitner;Karen Hale;Chris Halsey;Darren R Hargrave;J. Harman;Henrik Hasle;R. Haupt;L. Haveman;Douglas Hawkins;L. van der Heijden;Katja M. J. Heitink;M. V. D. van den Heuvel;N. Hijiya;L. Hjorth;B. Hoeben;Renske Houben;E. Hoving;C. Hulsker;Antoinette Jaspers;Liza Johnson;Niki Jurbergs;L. Kahalley;Seth E. Karol;G. Kaspers;Erica Kaye;Anne Kazak;Rachèl Kemps;T. Kepák;Raja Khan;P. Klimo;R. Knops;Andy Kolb;Rianne Koopman;K. Kraal;C. Kramm;Matthew T Krasin;P. Lähteenmäki;Judith Landman;J. Lavecchia;J. Lemiere;Angelia Lenschau;Charlotte Ligthart;Raphaële R. L. van Litsenburg;Jan Loeffen;Mignon Loh;John Lucas;J. van der Lugt;Peggy Lüttich;Renee Madden;Arshia Madni;John Maduro;Sanne van der Mark;Armanda Markesteijn;Christine Mauz;Annelies Mavinkurve;L. Meijer;T. Merchant;H. Merks;Bill Meyer;F. Meyer;Paul A. Meyers;Rebecka Meyers;Erna M. C. Michiels;M. Minkov;B. De Moerloose;Kristen Molina;John Moppett;Kyle Morgan;Bruce Morland;Sabine Mueller;Hermann Müller;Roosmarijn Muller;M. Muraca;Sandra Murphy;V. Nanduri;Michael Neel;C. Niemeyer;Maureen O’Brien;D. Orbach;Jale Özyurt;H. H. van der Pal;V. Papadakis;Alberto S Pappo;Lauren Pardue;Kendra R. Parris;Annemarie Peek;Bob Phillips;S. Plasschaert;Marieka Portegies;Brian S. Potter;I. Qaddoumi;Debbie Redd;Lineke Rehorst;Stephen Roberts;J. Roganovic;Stefan Rutkowski;M. V. D. van de Sande;Victor Santana;Stephanie Saslawsky;Kim Sawyer;Katrin Scheinemann;G. Schleiermacher;Kjeld Schmiegelow;R. Schoot;Fiona Schulte;A. Sehested;Inge Sieswerda;Rod Skinner;Relinde Slooff;Donna Sluijs;I. van der Sluis;Daniel Smith;Holly Spraker;Sheri L. Spunt;Mirjam Sulkers;T. Sweeney;Mary Taj;Clifford Takemoto;Aimee C. Talleur;Hannah Taylor;Chantal Tersteeg;Sheila Terwisscha;Sophie Thomas;Brigitte W. Thomassen;C. Tinkle;Rebecca Tippett;W. Tissing;I. Tonning;Anke Top;Erin Turner;Santhosh Upadhyaya;A. Uyttebroeck;Güler Uyuk;Kees P. van de Ven;B. Versluys;Emma Verwaaijen;Saphira Visser;Jochem van Vliet;E. de Vos;A. D. de Vries;D. V. van Vuurden;Claire Wakefield;K. Warren;Chantal van Wegen Peelen;Aaron Weiss;Marianne D van de Wetering;Jeremy Whelan;Romy Wichink;L. Wiener;Marc H.W.A. Wijnen;V. Willard;Terry Wilson;Jennifer Windham;Laura de Winter;O. Witt;M. Wlodarski;Kim Wouters;Corina Wouterse;Kasey Wyrick;L. Zaletel;Alia Zaidi;Jonne van Zanten;J. Zsiros;Lisa Zwiers
  • 通讯作者:
    Lisa Zwiers
SUPPORTING AUTOMATED WAREHOUSES WITH DATA-DRIVEN MODELLING
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrea Ferrari
  • 通讯作者:
    Andrea Ferrari

Andrea Ferrari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Ferrari', 18)}}的其他基金

Layered Materials Research Foundry
层状材料研究铸造厂
  • 批准号:
    EP/X015742/1
  • 财政年份:
    2023
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Graphene Integrated Photonic Transceivers (GIPT)
石墨烯集成光子收发器(GIPT)
  • 批准号:
    EP/X026728/1
  • 财政年份:
    2022
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Highly conductive Ultraflexible Graphene
高导电性超柔性石墨烯
  • 批准号:
    EP/M507799/1
  • 财政年份:
    2015
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Graphene Flexible Electronics and Optoelectronics
石墨烯柔性电子与光电子学
  • 批准号:
    EP/K01711X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Non-equilibrium and relaxation phenomena in graphene-based devices
石墨烯基器件中的非平衡和弛豫现象
  • 批准号:
    EP/G042357/1
  • 财政年份:
    2010
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Advanced waveguide laser source development using ultrafast laser inscription
使用超快激光刻字开发先进波导激光源
  • 批准号:
    EP/G030480/1
  • 财政年份:
    2009
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Follow On: Commercialisation of Nanotube-based Mode Lockers and Ultrafast Fibre Lasers
后续:基于纳米管的锁模器和超快光纤激光器的商业化
  • 批准号:
    EP/E500935/1
  • 财政年份:
    2007
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

Electrodeposited 2D Transition Metal Dichalcogenides on graphene: a novel route towards scalable flexible electronics
石墨烯上电沉积二维过渡金属二硫化物:实现可扩展柔性电子产品的新途径
  • 批准号:
    EP/V062603/1
  • 财政年份:
    2022
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Electrodeposited 2D Transition Metal Dichalcogenides on graphene: a novel route towards scalable flexible electronics
石墨烯上电沉积二维过渡金属二硫化物:实现可扩展柔性电子产品的新途径
  • 批准号:
    EP/V062689/1
  • 财政年份:
    2022
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Electrodeposited 2D Transition Metal Dichalcogenides on graphene: a novel route towards scalable flexible electronics
石墨烯上电沉积二维过渡金属二硫化物:实现可扩展柔性电子产品的新途径
  • 批准号:
    EP/V062387/1
  • 财政年份:
    2022
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Direct Laser Patterning of Copper-Graphene Composite Structures for Flexible Electronics
用于柔性电子产品的铜-石墨烯复合结构的直接激光图案化
  • 批准号:
    RGPIN-2020-04167
  • 财政年份:
    2022
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Discovery Grants Program - Individual
Direct Laser Patterning of Copper-Graphene Composite Structures for Flexible Electronics
用于柔性电子产品的铜-石墨烯复合结构的直接激光图案化
  • 批准号:
    RGPIN-2020-04167
  • 财政年份:
    2021
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Discovery Grants Program - Individual
Direct Laser Patterning of Copper-Graphene Composite Structures for Flexible Electronics
用于柔性电子产品的铜-石墨烯复合结构的直接激光图案化
  • 批准号:
    RGPIN-2020-04167
  • 财政年份:
    2020
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Discovery Grants Program - Individual
Direct Laser Patterning of Copper-Graphene Composite Structures for Flexible Electronics
用于柔性电子产品的铜-石墨烯复合结构的直接激光图案化
  • 批准号:
    DGECR-2020-00531
  • 财政年份:
    2020
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Discovery Launch Supplement
Anisotropic nanostructured materials based on graphene and two-dimensional materials for flexible and wearable electronics
基于石墨烯和二维材料的各向异性纳米结构材料,用于柔性和可穿戴电子产品
  • 批准号:
    2107542
  • 财政年份:
    2018
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Studentship
Graphene Flexible Electronics and Optoelectronics
石墨烯柔性电子与光电子学
  • 批准号:
    EP/K01711X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Research Grant
Printed transparent graphene electrodes for large-area, low-cost, flexible electronics technology (PrintGraphene Technology (PGT))
用于大面积、低成本、柔性电子技术的印刷透明石墨烯电极(PrintGraphene Technology (PGT))
  • 批准号:
    101492
  • 财政年份:
    2013
  • 资助金额:
    $ 877.07万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了