Layered Materials Research Foundry

层状材料研究铸造厂

基本信息

  • 批准号:
    EP/X015742/1
  • 负责人:
  • 金额:
    $ 238.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Graphene is ideal for opto-electronics due to its high carrier mobility at room temperature, electrically tuneable optical conductivity, and wavelength independent absorption. Graphene has opened a floodgate for many layered materials (LMs). For a given LM, the range of properties and applications can be tuned by varying the number of layers and their relative orientation. LM heterostructures (LMHs) with tailored properties can be created by stacking different layers. The number of bulk materials that can be exfoliated runs in the thousands, but few have been studied to date. The layered materials research foundry (LMRF) will develop a fully integrated LM-Silicon Photonics platform, serving 5G, 6G and quantum communications, facilitating new design concepts that unlock new performance levels. Graphene and the other non-graphene LMs are at two different stages of development. Graphene is more mature, and can now target functionalities beyond the state of the art in technologically relevant devices. In (opto-)electronics, photonics and sensors, graphene-based systems have already demonstrated extraordinary performance, with reduced power consumption, or photodetectors (PDs) with hyperspectral range for applications such as autonomous driving, where fast data exchange is a critical requisite for safe operation. Applications in light detection and ranging, security, ultrasensitive physical and chemical sensors for industrial, environmental and medical technologies are beginning to emerge and offer great promise. These technologies must be developed to achieve full industrial impact. The other non-graphene LMs are also at the centre of an ever increasing research effort as a new platform for quantum technology. They have already shown their potential, ranging from scalable components, such as quantum light sources, photon detectors and nanoscale sensors, to enabling new materials discovery within the broader field of quantum simulations. The challenge is understanding and tailoring the excitonic properties and the nature of the single photon emission process, as well as to make working integrated devices. Quantum emitters in LMs hold potential in terms of scalability, miniaturisation, integration with other systems and an extra quantum degree of freedom: the valley pseudospin. A major challenge is to go beyond lab demonstrators and show that LMs can achieve technological potential. The LMRF will accelerate this by enabling users to fabricate their devices in a scalable manner, with comparable technology to large-scale manufacturing foundries. This scalability is essential for LMs to become a disruptive technology. The vision is to combine the best of Silicon Photonics with LM-based optoelectronics, addressing key drawbacks of current platforms. ICT systems are the fastest growing consumers of electricity worldwide. Due to limitations set by current CMOS technology, energy efficiency reaches fundamental limits. LM-based optoelectronics builds on the optical/electronic integration ability of Silicon Photonics, which benefits product costs, but with modulator designs simpler than conventional Silicon Photonics at high data rates, giving lower power consumption.
石墨烯是光电子学的理想材料,因为它在室温下具有高的载流子迁移率,电学可调的光学导电性,以及与波长无关的吸收。石墨烯为许多层状材料(LMS)打开了闸门。对于给定的LM,可以通过改变层的数量和它们的相对取向来调整属性和应用的范围。可以通过堆叠不同的层来创建具有定制特性的LMHS。可以剥离的散装材料的数量数以千计,但到目前为止,很少有人对其进行研究。分层材料研究代工厂(LMRF)将开发一个完全集成的LM-Silicon Photonics平台,服务于5G、6G和量子通信,促进新的设计理念,释放新的性能水平。石墨烯和其他非石墨烯LMS处于两个不同的发展阶段。石墨烯更加成熟,现在可以在技术相关的设备中实现超出最先进水平的功能。在(光电)电子学、光子学和传感器领域,基于石墨烯的系统已经显示出非凡的性能,具有更低的功耗,或者具有高光谱范围的光电探测器(PD),用于自动驾驶等应用,在这些应用中,快速的数据交换是安全运行的关键条件。在光检测和测距、安全、工业、环境和医疗技术的超灵敏物理和化学传感器方面的应用开始出现,并提供了巨大的前景。必须开发这些技术,以实现全面的工业影响。作为量子技术的新平台,其他非石墨烯LMS也处于日益增长的研究努力的中心。它们已经展示了自己的潜力,从可扩展的组件,如量子光源、光子探测器和纳米传感器,到在更广泛的量子模拟领域内发现新材料。挑战是理解和定制激子特性和单光子发射过程的本质,以及制造工作的集成器件。LMS中的量子发射器在可伸缩性、微型化、与其他系统的集成以及额外的量子自由度方面具有潜力:山谷赝旋。一个主要的挑战是超越实验室演示,并证明LMS可以实现技术潜力。LMRF将加快这一进程,使用户能够以可扩展的方式制造他们的设备,使用可与大型制造铸造厂相媲美的技术。这种可伸缩性对于LMS成为一项颠覆性技术至关重要。我们的愿景是将硅光子学的精华与基于光子学的光电子学相结合,解决当前平台的主要缺陷。信息和通信技术系统是全球增长最快的电力消费者。由于当前cmos工艺的限制,能效达到了基本极限。基于LM的光电子学建立在Silicon Photonics的光学/电子集成能力基础上,这有利于产品成本,但调制器设计在高数据速率下比传统Silicon Photonics更简单,从而提供更低的功耗。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrafast Electronic Relaxation Dynamics of Atomically Thin MoS2 Is Accelerated by Wrinkling.
  • DOI:
    10.1021/acsnano.3c02917
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Ce Xu;Guoqing Zhou;E. Alexeev;A. Cadore;I. Paradisanos;A. Ott;G. Soavi;S. Tongay;G. Cerullo-G.-Cerul
  • 通讯作者:
    Ce Xu;Guoqing Zhou;E. Alexeev;A. Cadore;I. Paradisanos;A. Ott;G. Soavi;S. Tongay;G. Cerullo-G.-Cerul
Self-Induced Mode-Locking in Electrically Pumped Far-Infrared Random Lasers.
  • DOI:
    10.1002/advs.202206824
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Di Gaspare, Alessandra;Pistore, Valentino;Riccardi, Elisa;Pogna, Eva A. A.;Beere, Harvey E.;Ritchie, David A.;Li, Lianhe;Davies, Alexander Giles;Linfield, Edmund H.;Ferrari, Andrea C.;Vitiello, Miriam S.
  • 通讯作者:
    Vitiello, Miriam S.
Mapping nanoscale carrier confinement in polycrystalline graphene by terahertz spectroscopy
  • DOI:
    10.1038/s41598-024-51548-z
  • 发表时间:
    2024-02-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Whelan,Patrick R.;De Fazio,Domenico;Boggild,Peter
  • 通讯作者:
    Boggild,Peter
Control of Raman Scattering Quantum Interference Pathways in Graphene.
石墨烯中拉曼散射量子干涉路径的控制。
  • DOI:
    10.17863/cam.95923
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen X
  • 通讯作者:
    Chen X
Controlled Growth of Single-Crystal Graphene Wafers on Twin-Boundary-Free Cu(111) Substrates
  • DOI:
    10.1002/adma.202308802
  • 发表时间:
    2023-11-29
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Zhu,Yeshu;Zhang,Jincan;Liu,Zhongfan
  • 通讯作者:
    Liu,Zhongfan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Ferrari其他文献

Harnessing the Power of Metabarcoding in the Ecological Interpretation of Plant-Pollinator DNA Data: Strategies and Consequences of Filtering Approaches
利用元条形码的力量对植物传粉媒介 DNA 数据进行生态解释:过滤方法的策略和后果
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Tommasi;Andrea Ferrari;M. Labra;A. Galimberti;P. Biella
  • 通讯作者:
    P. Biella
The use of Matrigel at low concentration enhances in vitro blastocyst formation and hatching in a mouse embryo model.
使用低浓度的基质胶可增强小鼠胚胎模型中的体外囊胚形成和孵化。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    L. Lazzaroni;F. Fusi;N. Doldi;Andrea Ferrari
  • 通讯作者:
    Andrea Ferrari
Three-phase equilibrium in a GPU-based compositional reservoir simulator
  • DOI:
    10.1007/s10596-025-10369-3
  • 发表时间:
    2025-07-18
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Paola Panfili;Leonardo Patacchini;Andrea Ferrari;Kenneth Esler;Alberto Cominelli
  • 通讯作者:
    Alberto Cominelli
A joint international consensus statement for measuring quality of survival for patients with childhood cancer
衡量儿童癌症患者生存质量的联合国际共识声明
  • DOI:
    10.1038/s41591-023-02339-y
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    82.9
  • 作者:
    Rebecca J. van Kalsbeek;M. Hudson;R. L. Mulder;M. Ehrhardt;D. Green;D. Mulrooney;Jessica Hakkert;J. den Hartogh;A. Nijenhuis;H. V. van Santen;A. S. Schouten;Harm van Tinteren;L. Verbruggen;H. Conklin;L. Jacola;R. Webster;M. Partanen;W. Kollen;M. Grootenhuis;R. Pieters;L. Kremer;Rebecca J. Jaap Hanneke M. Harm Femke Madeleine Traci Chan van Kalsbeek den Hartogh van Santen van Tinteren A;Rebecca J. van Kalsbeek;J. den Hartogh;H. V. van Santen;Harm van Tinteren;F. Aarsen;Madeleine Adams;Traci Adams;Chantal van den Akker;Roland Amman;Shekinah J Andrews;Greg Armstrong;Andishe Atterbaschi;Amedeo A Azizi;K. van Baarsen;Simon Bailey;Justin Baker;Lisa Bakker;Laura R. Beek;Peter Bekkering;Janneke van den Bergen;Esther M. M. van den Bergh;M. Bierings;Michael Bishop;G. Bisogno;John Boatner;Saskia Boerboom;Judith de Bont;F. Boop;C. van den Bos;Eric Bouffet;Rick Brandsma;Ida Bremer Ophorst;Bernadette Brennan;Rachel C. Brennan;D. Bresters;Sippy ten Brink;L. Brugières;Birgit Burkhardt;Gabriele Calaminus;F. Calkoen;Kristin E. Canavera;Leeann Carmichael;Sharon M Castellino;M. Cepelova;W. Chemaitilly;Julia Chisholm;Karen Clark;Debbie Crom;Amanda Curry;Brian M. DeFeo;Jennifer van Dijk;Stephanie B. Dixon;Jeffrey Dome;Jean Donadieu;Babet L Drenth;Carlo Dufour;Adam Esbenshade;G. Escherich;T. Fay;C. Faure;Andrea Ferrari;J. Flerlage;Kayla Foster;Lindsay Frazier;Wayne Furman;Carlos Galindo;Hoong;Jessica A. Gartrell;James I. Geller;C. Gidding;Jan Godzinsky;B. Goemans;R. Gorlick;Rinske Graafland;Norbert Graf;M. van Grotel;Marjolein ter Haar;V. de Haas;M. Hagleitner;Karen Hale;Chris Halsey;Darren R Hargrave;J. Harman;Henrik Hasle;R. Haupt;L. Haveman;Douglas Hawkins;L. van der Heijden;Katja M. J. Heitink;M. V. D. van den Heuvel;N. Hijiya;L. Hjorth;B. Hoeben;Renske Houben;E. Hoving;C. Hulsker;Antoinette Jaspers;Liza Johnson;Niki Jurbergs;L. Kahalley;Seth E. Karol;G. Kaspers;Erica Kaye;Anne Kazak;Rachèl Kemps;T. Kepák;Raja Khan;P. Klimo;R. Knops;Andy Kolb;Rianne Koopman;K. Kraal;C. Kramm;Matthew T Krasin;P. Lähteenmäki;Judith Landman;J. Lavecchia;J. Lemiere;Angelia Lenschau;Charlotte Ligthart;Raphaële R. L. van Litsenburg;Jan Loeffen;Mignon Loh;John Lucas;J. van der Lugt;Peggy Lüttich;Renee Madden;Arshia Madni;John Maduro;Sanne van der Mark;Armanda Markesteijn;Christine Mauz;Annelies Mavinkurve;L. Meijer;T. Merchant;H. Merks;Bill Meyer;F. Meyer;Paul A. Meyers;Rebecka Meyers;Erna M. C. Michiels;M. Minkov;B. De Moerloose;Kristen Molina;John Moppett;Kyle Morgan;Bruce Morland;Sabine Mueller;Hermann Müller;Roosmarijn Muller;M. Muraca;Sandra Murphy;V. Nanduri;Michael Neel;C. Niemeyer;Maureen O’Brien;D. Orbach;Jale Özyurt;H. H. van der Pal;V. Papadakis;Alberto S Pappo;Lauren Pardue;Kendra R. Parris;Annemarie Peek;Bob Phillips;S. Plasschaert;Marieka Portegies;Brian S. Potter;I. Qaddoumi;Debbie Redd;Lineke Rehorst;Stephen Roberts;J. Roganovic;Stefan Rutkowski;M. V. D. van de Sande;Victor Santana;Stephanie Saslawsky;Kim Sawyer;Katrin Scheinemann;G. Schleiermacher;Kjeld Schmiegelow;R. Schoot;Fiona Schulte;A. Sehested;Inge Sieswerda;Rod Skinner;Relinde Slooff;Donna Sluijs;I. van der Sluis;Daniel Smith;Holly Spraker;Sheri L. Spunt;Mirjam Sulkers;T. Sweeney;Mary Taj;Clifford Takemoto;Aimee C. Talleur;Hannah Taylor;Chantal Tersteeg;Sheila Terwisscha;Sophie Thomas;Brigitte W. Thomassen;C. Tinkle;Rebecca Tippett;W. Tissing;I. Tonning;Anke Top;Erin Turner;Santhosh Upadhyaya;A. Uyttebroeck;Güler Uyuk;Kees P. van de Ven;B. Versluys;Emma Verwaaijen;Saphira Visser;Jochem van Vliet;E. de Vos;A. D. de Vries;D. V. van Vuurden;Claire Wakefield;K. Warren;Chantal van Wegen Peelen;Aaron Weiss;Marianne D van de Wetering;Jeremy Whelan;Romy Wichink;L. Wiener;Marc H.W.A. Wijnen;V. Willard;Terry Wilson;Jennifer Windham;Laura de Winter;O. Witt;M. Wlodarski;Kim Wouters;Corina Wouterse;Kasey Wyrick;L. Zaletel;Alia Zaidi;Jonne van Zanten;J. Zsiros;Lisa Zwiers
  • 通讯作者:
    Lisa Zwiers
SUPPORTING AUTOMATED WAREHOUSES WITH DATA-DRIVEN MODELLING
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrea Ferrari
  • 通讯作者:
    Andrea Ferrari

Andrea Ferrari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Ferrari', 18)}}的其他基金

Graphene Integrated Photonic Transceivers (GIPT)
石墨烯集成光子收发器(GIPT)
  • 批准号:
    EP/X026728/1
  • 财政年份:
    2022
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Highly conductive Ultraflexible Graphene
高导电性超柔性石墨烯
  • 批准号:
    EP/M507799/1
  • 财政年份:
    2015
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Graphene Flexible Electronics and Optoelectronics: Bridging The Gap Between Academia and Industry
石墨烯柔性电子和光电:弥合学术界和工业界之间的差距
  • 批准号:
    EP/K017144/1
  • 财政年份:
    2013
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Graphene Flexible Electronics and Optoelectronics
石墨烯柔性电子与光电子学
  • 批准号:
    EP/K01711X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Non-equilibrium and relaxation phenomena in graphene-based devices
石墨烯基器件中的非平衡和弛豫现象
  • 批准号:
    EP/G042357/1
  • 财政年份:
    2010
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Advanced waveguide laser source development using ultrafast laser inscription
使用超快激光刻字开发先进波导激光源
  • 批准号:
    EP/G030480/1
  • 财政年份:
    2009
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant
Follow On: Commercialisation of Nanotube-based Mode Lockers and Ultrafast Fibre Lasers
后续:基于纳米管的锁模器和超快光纤激光器的商业化
  • 批准号:
    EP/E500935/1
  • 财政年份:
    2007
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Research Grant

相似国自然基金

Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: RUI: Patterned Doping of Layered Materials
合作研究:RUI:层状材料的图案化掺杂
  • 批准号:
    2300639
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321302
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321301
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Patterned Doping of Layered Materials
合作研究:RUI:层状材料的图案化掺杂
  • 批准号:
    2300640
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Selective Extraction of Lithium from Seawater using Structurally Modified Metal Oxide Layered Materials
合作研究:使用结构改性金属氧化物层状材料从海水中选择性提取锂
  • 批准号:
    2227164
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Selective Extraction of Lithium from Seawater using Structurally Modified Metal Oxide Layered Materials
合作研究:使用结构改性金属氧化物层状材料从海水中选择性提取锂
  • 批准号:
    2227165
  • 财政年份:
    2023
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Materials Chemistry to Engage Anion Uptake and Release in Layered Transition Metal Oxides and Hydroxides
合作研究:了解层状过渡金属氧化物和氢氧化物中阴离子吸收和释放的材料化学
  • 批准号:
    2236704
  • 财政年份:
    2022
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Materials Chemistry to Engage Anion Uptake and Release in Layered Transition Metal Oxides and Hydroxides
合作研究:了解层状过渡金属氧化物和氢氧化物中阴离子吸收和释放的材料化学
  • 批准号:
    2216047
  • 财政年份:
    2022
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Materials Chemistry to Engage Anion Uptake and Release in Layered Transition Metal Oxides and Hydroxides
合作研究:了解层状过渡金属氧化物和氢氧化物中阴离子吸收和释放的材料化学
  • 批准号:
    2216048
  • 财政年份:
    2022
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Engineering Fracture Response and Transport Behavior in Additively Manufactured, Layered Concrete Materials
合作研究:增材制造的层状混凝土材料的工程断裂响应和传输行为
  • 批准号:
    2129566
  • 财政年份:
    2021
  • 资助金额:
    $ 238.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了