Neon Focussed-Ion-Beam Nanofabrication

氖聚焦离子束纳米加工

基本信息

  • 批准号:
    EP/K024701/1
  • 负责人:
  • 金额:
    $ 5.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Our vision is to create a state-of-the-art three-dimensional nanofabrication facility for development of electron, photonic and nanofluidic devices, based on the neon focussed-ion-beam (FIB) instrument. It will transform the nanofabrication capabilities of the UK science and engineering community by offering rapid prototyping of devices with feature sizes below 10 nm. By using neon as the primary ion species, sampling poisoning effects will be radically reduced by comparison with conventional gallium-ion FIB. Neon beams also permit high-quality nanoscale machining of silicon, which is not possible with the recently-introduced helium-ion FIB. Furthermore sputtering rates (which ultimate limit throughput) are an order of magnitude higher than with helium ions, allowing significant volumes of material to be machined within laboratory timescales.Over the last twenty years, FIB has become a dominant nanofabrication tool for research labs. It is particularly well suited to the research environment since prototype devices can very quickly be created without the need for extensive process development. The Achilles heel of commercial FIB systems, however, is that (until recently) they all use gallium ions. The reactivity and high mobility of these gallium ions once they have been (unavoidably) implanted into a nanofabricated sample often leads to deleterious sample poisoning effects. For example, the properties of correlated electron systems in functional oxides intimately depend upon the oxygen stoichiometry and order; in most oxides these are irreversibly perturbed by Ga ions. Similarly the optical losses in plasmonic nano-apertures are limited by the damage done to the Ga-ion-milled dielectric. Furthermore, the electrical properties of nanoelectronic devices are also directly affected by Ga implantation. Recognising these limitations, Carl Zeiss released a new FIB microscope five years ago in which the Ga source is replaced by a helium gas field-ion source (GFIS). The main advantage over Ga is that the ion species is now an inert gas, thereby removing the sample poisoning problem at a stroke. The helium GFIS FIB microscope is therefore a rival to the field-emission scanning electron microscope for imaging applications. The obvious disadvantage of using helium, however, is that the sputter yield (i.e. the rate at which material is removed by incident ions) is typically 30 times smaller for He ions than for Ga ions. This greatly increases the fabrication time, rendering He ions unsuitable for many applications.This naturally suggests the use of heavier inert gases in the GFIS, an opportunity which Carl Zeiss are now realising with its new neon GFIS FIB system. (This product is scheduled to be released in September 2012.) The sputter yield for neon ions is typically ten times greater than that for He ions. For nanofabrication applications the use of neon represents an ideal combination of rapid fabrication and minimal poisoning. Demonstrations of neon-ion nanofabrication at Carl Zeiss's development laboratory show machined resolution better than 10 nm. This rivals that obtainable with state of the art electron-beam lithography, with the added advantages of rapid prototyping and the possibility (since FIB is a resist-less technique, allowing the beam to be aligned at an arbitrary angle with respect to the sample surface) of three-dimensional nanopatterning.
我们的愿景是基于氖聚焦离子束 (FIB) 仪器创建最先进的三维纳米加工设施,用于开发电子、光子和纳米流体器件。它将通过提供特征尺寸低于 10 nm 的设备的快速原型制作来改变英国科学和工程界的纳米制造能力。通过使用氖气作为主要离子种类,与传统的镓离子 FIB 相比,采样中毒效应将大大降低。氖束还可以对硅进行高质量的纳米级加工,这是最近推出的氦离子 FIB 无法实现的。此外,溅射速率(最终限制吞吐量)比氦离子高一个数量级,允许在实验室时间内加工大量材料。在过去的二十年中,FIB 已成为研究实验室的主要纳米加工工具。它特别适合研究环境,因为可以非常快速地创建原型设备,而无需进行大量的工艺开发。然而,商业 FIB 系统的致命弱点是(直到最近)它们都使用镓离子。这些镓离子一旦(不可避免地)被植入纳米加工样品中,其反应活性和高迁移率通常会导致有害的样品中毒效应。例如,功能性氧化物中相关电子系统的性质密切取决于氧的化学计量和顺序;在大多数氧化物中,这些都会受到 Ga 离子的不可逆干扰。类似地,等离激元纳米孔径中的光学损耗受到对 Ga 离子铣削电介质造成的损坏的限制。此外,纳米电子器件的电性能也直接受到Ga注入的影响。认识到这些局限性,卡尔蔡司五年前发布了一款新型 FIB 显微镜,其中 Ga 源被氦气场离子源 (GFIS) 取代。与 Ga 相比的主要优点是离子物质现在是惰性气体,从而一次性消除了样品中毒问题。因此,氦气 GFIS FIB 显微镜是成像应用领域场发射扫描电子显微镜的竞争对手。然而,使用氦气的明显缺点是,He 离子的溅射产额(即入射离子去除材料的速率)通常比 Ga 离子小 30 倍。这大大增加了制造时间,使得氦离子不适合许多应用。这自然建议在 GFIS 中使用较重的惰性气体,卡尔蔡司现在通过其新型氖 GFIS FIB 系统实现了这一机会。 (该产品计划于 2012 年 9 月发布。)氖离子的溅射量通常是氦离子的十倍。对于纳米制造应用,氖气的使用代表了快速制造和最小中毒的理想组合。 Carl Zeiss 开发实验室的氖离子纳米加工演示表明加工分辨率优于 10 nm。这可与最先进的电子束光刻技术相媲美,并具有快速原型制作的额外优势以及三维纳米图案化的可能性(因为 FIB 是一种无抗蚀剂技术,允许电子束相对于样品表面以任意角度对齐)。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fossil biomass preserved as graphitic carbon in a late Paleoproterozoic banded iron formation metamorphosed at more than 550°C
  • DOI:
    10.1144/jgs2018-097
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    D. Papineau;Bradley T. De Gregorio;J. Sagar;R. Thorogate;Jianhua Wang;L. Nittler;D. Kilcoyne;H. Marbach;Martin Drost;G. Thornton
  • 通讯作者:
    D. Papineau;Bradley T. De Gregorio;J. Sagar;R. Thorogate;Jianhua Wang;L. Nittler;D. Kilcoyne;H. Marbach;Martin Drost;G. Thornton
Embedding NbN Nanowires Into Quantum Circuits With a Neon Focused Ion Beam
Low-Loss Superconducting Nanowire Circuits Using a Neon Focused Ion Beam
  • DOI:
    10.1103/physrevapplied.8.014039
  • 发表时间:
    2017-07-31
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Burnett, J.;Sagar, J.;Fenton, J. C.
  • 通讯作者:
    Fenton, J. C.
Emergence of Quantum Phase-Slip Behaviour in Superconducting NbN Nanowires: DC Electrical Transport and Fabrication Technologies.
  • DOI:
    10.3390/nano8060442
  • 发表时间:
    2018-06-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Constantino NGN;Anwar MS;Kennedy OW;Dang M;Warburton PA;Fenton JC
  • 通讯作者:
    Fenton JC
MBE growth and morphology control of ZnO nanobelts with polar axis perpendicular to growth direction
  • DOI:
    10.1016/j.matlet.2017.10.017
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Kennedy, Oscar W.;Coke, Maddison L.;Warburton, Paul A.
  • 通讯作者:
    Warburton, Paul A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Warburton其他文献

Robustness of diabatic enhancement in quantum annealing
量子退火中非绝热增强的鲁棒性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natasha Feinstein;Ivan Shalashilin;Sougato Bose;Paul Warburton
  • 通讯作者:
    Paul Warburton
At-line validation of a process analytical technology approach for quality control of melamine-urea-formaldehyde resin in composite wood-panel production using near infrared spectroscopy
  • DOI:
    10.1007/s00216-016-0098-4
  • 发表时间:
    2016-12-03
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Roger Meder;Wolfgang Stahl;Paul Warburton;Sam Woolley;Scott Earnshaw;Klaus Haselhofer;Ken van Langenberg;Nick Ebdon;Roger Mulder
  • 通讯作者:
    Roger Mulder

Paul Warburton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Warburton', 18)}}的其他基金

MACON-QC: Many-Body Phases In Continuous-Time Quantum Computation
MACON-QC:连续时间量子计算中的多体相
  • 批准号:
    EP/Y004590/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Research Grant
International Network on Quantum Annealing (INQA)
国际量子退火网络 (INQA)
  • 批准号:
    EP/W027003/1
  • 财政年份:
    2022
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Research Grant
Miniature Dilution Refrigerator
微型稀释冰箱
  • 批准号:
    EP/R044236/1
  • 财政年份:
    2018
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Research Grant
Quantum algorithms for optimised planning/scheduling applications (Feasibility Study)
用于优化规划/调度应用的量子算法(可行性研究)
  • 批准号:
    EP/R020159/1
  • 财政年份:
    2017
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Research Grant
FUNCTIONAL NANOWIRES, NANOWIRE HETEROSTRUCTURES AND THREE-DIMENSIONAL NANOWIRE NETWORKS
功能纳米线、纳米线异质结构和三维纳米线网络
  • 批准号:
    EP/H005544/1
  • 财政年份:
    2010
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Fellowship
Quantum Phase Slip Nanowires for Current Standards
当前标准的量子相滑纳米线
  • 批准号:
    EP/G061939/1
  • 财政年份:
    2009
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Research Grant
Electrical and Mechanical Properties of Three-Dimensional Tungsten Nanostructures
三维钨纳米结构的电学和机械性能
  • 批准号:
    EP/F035411/1
  • 财政年份:
    2008
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Research Grant
Plasma 2006: The 5th International Symposium on the Intrinsic Josephson Effect and Plasma Oscillations in High Tc Superconductors.
Plasma 2006:第五届高温超导体本征约瑟夫森效应和等离子体振荡国际研讨会。
  • 批准号:
    EP/D068789/1
  • 财政年份:
    2006
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Research Grant
Externally-Shunted High-Gap Josephson Junctions: Design, Fabrication and Noise Measurements
外部分流高间隙约瑟夫森结:设计、制造和噪声测量
  • 批准号:
    EP/D029783/1
  • 财政年份:
    2006
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Research Grant

相似海外基金

Gold-Silicon Focussed Ion Beam System with Scanning Electron Microscope
带扫描电子显微镜的金硅聚焦离子束系统
  • 批准号:
    433703179
  • 财政年份:
    2019
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Major Research Instrumentation
Writing nanomagnets: Investigation of new magnetic nanostructures fabricated by focussed electron and ion beams
写入纳米磁体:研究通过聚焦电子和离子束制造的新型磁性纳米结构
  • 批准号:
    EP/M008517/2
  • 财政年份:
    2018
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Fellowship
Development of high-resolution focussed ion beam-secondary ion mass spectrometry (FIB-SIMS) as a tool for Earth and Materials sciences
开发高分辨率聚焦离子束二次离子质谱 (FIB-SIMS) 作为地球和材料科学的工具
  • 批准号:
    2055022
  • 财政年份:
    2017
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Studentship
Development of high-resolution focussed ion beam-secondary ion mass spectrometry (FIB-SIMS) as a tool for Earth and Materials sciences
开发高分辨率聚焦离子束二次离子质谱 (FIB-SIMS) 作为地球和材料科学的工具
  • 批准号:
    1943910
  • 财政年份:
    2017
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Studentship
Ultra-high resolution focussed ion beam facility for Western Australia
西澳大利亚超高分辨率聚焦离子束设施
  • 批准号:
    LE150100006
  • 财政年份:
    2015
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Writing nanomagnets: Investigation of new magnetic nanostructures fabricated by focussed electron and ion beams
写入纳米磁体:研究通过聚焦电子和离子束制造的新型磁性纳米结构
  • 批准号:
    EP/M008517/1
  • 财政年份:
    2014
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Fellowship
Multibeam Focussed Ion Beam Gerät (FIB/SEM)
多束聚焦离子束装置 (FIB/SEM)
  • 批准号:
    231164227
  • 财政年份:
    2013
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Major Research Instrumentation
FIB/REM-System (Focussed Ion Beam kombiniert mit Rasterelektronenmikroskop)
FIB/REM系统(聚焦离子束结合扫描电子显微镜)
  • 批准号:
    121448065
  • 财政年份:
    2009
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Major Research Instrumentation
Triple-Beam Focussed-Ion-Beam Microscope
三束聚焦离子束显微镜
  • 批准号:
    EP/F019564/1
  • 财政年份:
    2008
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Research Grant
The Nanoscale Characterisation Centre WA Focussed Ion Beam Nanofabrication and Milling Facility
纳米表征中心 WA 聚焦离子束纳米加工和铣削设施
  • 批准号:
    LE0775553
  • 财政年份:
    2007
  • 资助金额:
    $ 5.55万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了