Large-area electronics based on two-dimensional atomically thin materials

基于二维原子薄材料的大面积电子器件

基本信息

  • 批准号:
    EP/K033840/1
  • 负责人:
  • 金额:
    $ 13.13万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Novel forefront technological products such as, paper like displays, stretchable sensor skin, electronic textiles, and robotic sensors require high speed processing on unconventional form factor substrates, which can be bendable, flexible, stretchable and that they can assume different geometries. Therefore, field effect transistors with performances on a par with the wafer-based conventional electronics and at the same time flexible, compatible with sensitive substrates (plastic/rubber) are required. As the performance figures of FETs are intrinsically related to the ultimate electronic properties of the channel material and its interfaces, the need is to have materials responsive to all aforementioned demands. At present, large area electronics on plastic and unusual format electronics use low performing materials such as organic conductors or metal oxide or alternatively newly emerging Si-like materials shaped into thin membranes, which are fabricated by multi step process exploiting the existing industry infrastructure with the related high costs. Graphene has been identified as a suitable electronic material for all kind of electronic technologies, owing to its mechanical, electrical, optical, chemical properties. Although graphene is the ideal material as a transparent electrode, it does not have a band gap hindering its use as a channel material. Here I propose studying a new range of 2D atomically thin materials, which share optical and mechanical properties of graphene, but in addition they are semiconducting with a band gap (1.1-1.9 eV). Moreover, their high carrier mobility, uniquely distinguishes them from graphene as channel material for development of heterogeneous electronics. These materials are practically appealing as they offer realistic pathways to manufacture devices due to their 2 dimensional geometry facilitating integration, they do not have dangling bonds on the basal plane, allowing manipulation as individual particles in solution and they have unique mechanical features, with effects related to shape distortions and folding. Simultaneously, they present quantum and other size-dependent effects leading to a wealth of electronic, phonon dynamics and optical properties, not found in zero- and one-dimensional materials, offering opportunities to extend the frontiers of their applications to spintronics, photovoltaic, catalysis etc. The main objective is to demonstrate low-voltage n/p-type FETs operating in logic inverters, which are the elemental units of logic electronics.Toward this end, the aim is to develop novel solution phase processing necessary to isolate monolayer flakes with preserved atomic and electronic structure, from their 3D counterpart and create stable inks of these platelets. These inks will be then exploited to establish a reliable array of scalable deterministic assembly techniques of the flakes onto any substrates in the form of highly uniform ultrathin films over large areas. These materials will be interfaced with the atomically thin organic dielectrics, which secure low-power operation. In addition both, 2D membranes as well as the organic components are transparent in the optical range due to their ultimately thin thickness leading to semitransparent devices. The solution based processing at room temperature will ensure low cost manufacturing and compatibility with any plastic/rubber substrates, and reduction of energy employed for fabrication addressing also worldwide need for energy saving. The raw materials cost is also competitive in comparison with the existing materials for electronics. Overall the proposed research can lead to new economic benefits, extend the frontiers of the present electronic technology, and open new scenarios in fundamental science in respect to new quantum and other size-phenomena.
新型前沿技术产品,例如纸质显示器、可拉伸传感器皮肤、电子纺织品和机器人传感器,需要在非常规形状因子基板上进行高速处理,这些基板可以弯曲、柔性、可拉伸,并且可以呈现不同的几何形状。因此,需要场效应晶体管的性能与基于晶圆的传统电子器件相当,同时具有柔性,与敏感基板(塑料/橡胶)兼容。由于 FET 的性能指标本质上与沟道材料及其界面的最终电子特性相关,因此需要有能够满足所有上述要求的材料。目前,塑料上的大面积电子器件和不寻常格式的电子器件使用低性能材料,例如有机导体或金属氧化物或新兴的薄膜状硅材料,这些材料是通过利用现有工业基础设施的多步骤工艺制造的,但成本较高。由于其机械、电学、光学、化学特性,石墨烯已被认为是适用于各种电子技术的电子材料。尽管石墨烯是作为透明电极的理想材料,但它不具有阻碍其用作沟道材料的带隙。在这里,我建议研究一系列新的二维原子薄材料,它们具有石墨烯的光学和机械特性,但此外它们是具有带隙(1.1-1.9 eV)的半导体。此外,它们的高载流子迁移率使其与作为异质电子器件开发的通道材料的石墨烯有独特的区别。这些材料实际上很有吸引力,因为它们提供了制造设备的现实途径,因为它们的二维几何形状有利于集成,它们在基面上没有悬空键,允许在溶液中作为单个颗粒进行操作,并且它们具有独特的机械特征,具有与形状扭曲和折叠相关的效果。同时,它们呈现量子和其他尺寸相关效应,从而产生丰富的电子、声子动力学和光学特性,这是零维和一维材料中所没有的,为将其应用领域扩展到自旋电子学、光伏、催化等领域提供了机会。主要目标是演示在逻辑逆变器中运行的低压 n/p 型 FET,逻辑逆变器是逻辑的基本单元 为此,我们的目标是开发新颖的溶液相处理技术,以将具有保留原子和电子结构的单层薄片与其 3D 对应物分离,并创建这些薄片的稳定墨水。然后将利用这些墨水建立一系列可靠的可扩展的确定性组装技术,将薄片以大面积高度均匀的超薄膜的形式安装到任何基材上。这些材料将与原子级薄的有机电介质连接,从而确保低功耗运行。此外,二维膜以及有机组件在光学范围内都是透明的,因为它们最终的厚度很薄,导致半透明设备。基于解决方案的室温加工将确保低成本制造和与任何塑料/橡胶基材的兼容性,并减少制造所用的能源,满足全球节能的需求。与现有的电子材料相比,原材料成本也具有竞争力。总体而言,所提出的研究可以带来新的经济效益,扩展当前电子技术的前沿,并在新的量子和其他尺寸现象方面开辟基础科学的新场景。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Exfoliation and Functionalisation of Two-Dimensional Crystalline Carbon Nitride by Framework Charging
通过框架充电实现二维晶体氮化碳的快速剥离和功能化
  • DOI:
    10.1002/ange.201800875
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jia J
  • 通讯作者:
    Jia J
Graphene oxide membranes on ceramic hollow fibers - Microstructural stability and nanofiltration performance
  • DOI:
    10.1016/j.memsci.2015.03.001
  • 发表时间:
    2015-06-15
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Aba, Nor Farah Diana;Chong, Jeng Yi;Li, K.
  • 通讯作者:
    Li, K.
Mesoscale assembly of chemically modified graphene into complex cellular networks.
  • DOI:
    10.1038/ncomms5328
  • 发表时间:
    2014-07-07
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Barg, Suelen;Perez, Felipe Macul;Ni, Na;Pereira, Paula do Vale;Maher, Robert C.;Garcia-Tunon, Esther;Eslava, Salvador;Agnoli, Stefano;Mattevi, Cecilia;Saiz, Eduardo
  • 通讯作者:
    Saiz, Eduardo
Graphene-Carbon Nanotube Hybrids as Robust Catalyst Supports in Proton Exchange Membrane Fuel Cells
  • DOI:
    10.1149/2.0891603jes
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kien-Cuong Pham;McPhail, David S.;Chua, Daniel H. C.
  • 通讯作者:
    Chua, Daniel H. C.
TiO2/graphene nanocomposites from the direct reduction of graphene oxide by metal evaporation
  • DOI:
    10.1016/j.carbon.2013.11.008
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Favaro, Marco;Agnoli, Stefano;Granozzi, Gaetano
  • 通讯作者:
    Granozzi, Gaetano
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cecilia Mattevi其他文献

Nature-inspired batteries: from biomaterials to biomimetic design strategies
受自然启发的电池:从生物材料到仿生设计策略
  • DOI:
    10.1039/d4gc00638k
  • 发表时间:
    2024-06-17
  • 期刊:
  • 影响因子:
    9.200
  • 作者:
    Stefano Tagliaferri;Louis Gaspard;Heather Au;Cecilia Mattevi;Maria-Magdalena Titirici;Maria Crespo-Ribadeneyra
  • 通讯作者:
    Maria Crespo-Ribadeneyra

Cecilia Mattevi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cecilia Mattevi', 18)}}的其他基金

3D Printed Zn-ion Batteries For Wearable Devices (3DZnBat)
用于可穿戴设备的 3D 打印锌离子电池 (3DZnBat)
  • 批准号:
    EP/X037924/1
  • 财政年份:
    2023
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Research Grant
EPSRC-Royal Society fellowship engagement (2012): Tailoring the Electronic Properties of Semiconducting Transition Metal Dichalcogenides
EPSRC-皇家学会奖学金参与(2012):定制半导体过渡金属二硫化物的电子特性
  • 批准号:
    EP/L003481/1
  • 财政年份:
    2013
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Fellowship

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
  • 批准号:
    10634911
  • 财政年份:
    2023
  • 资助金额:
    $ 13.13万
  • 项目类别:
Optimizing ultraflexible electrodes and integrated electronics for high-resolution, large-scale intraspinal recording and modulation
优化超柔性电极和集成电子器件以实现高分辨率、大规模椎管内记录和调制
  • 批准号:
    10617092
  • 财政年份:
    2023
  • 资助金额:
    $ 13.13万
  • 项目类别:
Development of acceptor materials for the large-area air-stable Organic Solar Cell with low energy loss
低能量损失大面积空气稳定有机太阳能电池受体材料的开发
  • 批准号:
    23K04913
  • 财政年份:
    2023
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fast, large area, multiphoton exoscope (FLAME) for improving early detection of melanoma
快速、大面积、多光子外窥镜 (FLAME) 用于改善黑色素瘤的早期检测
  • 批准号:
    10687990
  • 财政年份:
    2022
  • 资助金额:
    $ 13.13万
  • 项目类别:
Integration of High Definition Display Technologies with Platinum Nanorod Microelectrodes for Large Scale in-vivo Recording and Stimulation
高清显示技术与铂纳米棒微电极的集成,用于大规模体内记录和刺激
  • 批准号:
    10293899
  • 财政年份:
    2021
  • 资助金额:
    $ 13.13万
  • 项目类别:
Green roll-to-roll manufacturing of low-cost high-performance large area flexible electronics
低成本高性能大面积柔性电子产品的绿色卷对卷制造
  • 批准号:
    549207-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Alliance Grants
Green roll-to-roll manufacturing of low-cost high-performance large area flexible electronics
低成本高性能大面积柔性电子产品的绿色卷对卷制造
  • 批准号:
    549207-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 13.13万
  • 项目类别:
    Alliance Grants
Neuropixels NXT: Integrated Silicon Probes for Large Scale Extracellular Recording in Rodents and Primates
Neuropixels NXT:用于啮齿动物和灵长类动物大规模细胞外记录的集成硅探针
  • 批准号:
    10475277
  • 财政年份:
    2020
  • 资助金额:
    $ 13.13万
  • 项目类别:
Neuropixels NXT: Integrated Silicon Probes for Large Scale Extracellular Recording in Rodents and Primates
Neuropixels NXT:用于啮齿动物和灵长类动物大规模细胞外记录的集成硅探针
  • 批准号:
    9924965
  • 财政年份:
    2020
  • 资助金额:
    $ 13.13万
  • 项目类别:
Smart Dura: A Functional Large-scale, High-Density Optoelectric Dura for Non-Human Primates
智能硬脑膜:用于非人类灵长类动物的功能性大型高密度光电硬脑膜
  • 批准号:
    10705061
  • 财政年份:
    2020
  • 资助金额:
    $ 13.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了