New Geometric Structures from String Theory
弦理论的新几何结构
基本信息
- 批准号:EP/K034456/1
- 负责人:
- 金额:$ 201.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our proposed research is aimed towards discovering the mathematical structures underpinning the fundamental nature of matter, the origins of the universe and the quantum structure of spacetime each of which would be a revolution in science, with possible consequences as far-reaching as they were when matter was shown to be composed of atoms. Just as differential geometry was vital for Einstein's theory of gravity, the mathematics we are investigating could be an essential part of a revolution the formulation of string theory, with possible far-reaching consequences. Theoretical physics has long been central in motivating vital new directions in geometry. Recent research in string theory points to the existence of a rich class of remarkable new geometrical structures. The aim of the research is to develop the underlying unifying mathematics of these structures, laying the foundations for new areas of geometric study using tools and ideas from string theory and gauge theory. It is rare to find a new type of geometry that is both beautiful and tractable. Generalized geometry, introduced by Hitchin, is one such new example, and like others is strongly linked with ideas from physics. The overarching focus of our proposal will be the much larger set of ideas of which this is part, including extended geometries, doubled geometries, flux geometries, non-geometric spaces and holographic structures. We anticipate wide ranging applications across mathematical sciences from geometry and topology to algebra and number theory and mathematical physics.
我们提出的研究旨在发现支撑物质基本性质、宇宙起源和时空量子结构的数学结构,其中每一个都将是一场科学革命,其可能产生的影响与物质被证明是由原子组成时一样深远。正如微分几何对于爱因斯坦的引力理论至关重要一样,我们正在研究的数学也可能成为弦理论公式革命的重要组成部分,并可能产生深远的影响。长期以来,理论物理学一直是推动几何学重要新方向的核心。弦理论的最新研究指出存在一类丰富的、引人注目的新几何结构。该研究的目的是开发这些结构的基础统一数学,利用弦理论和规范理论的工具和思想为几何研究的新领域奠定基础。很难找到一种既美观又易于处理的新型几何形状。希钦提出的广义几何就是这样一个新例子,与其他例子一样,它与物理学思想密切相关。我们提案的首要重点将是更大的一组想法,这是其中的一部分,包括扩展几何、双重几何、通量几何、非几何空间和全息结构。我们预计在数学科学中会有广泛的应用,从几何和拓扑到代数和数论以及数学物理。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The exceptional sigma model
- DOI:10.1007/jhep04(2018)064
- 发表时间:2018-02
- 期刊:
- 影响因子:5.4
- 作者:Alex S. Arvanitakis;Chris D. A. Blair
- 通讯作者:Alex S. Arvanitakis;Chris D. A. Blair
Spatially modulated and supersymmetric deformations of ABJM theory
- DOI:10.1007/jhep04(2019)099
- 发表时间:2018-12
- 期刊:
- 影响因子:5.4
- 作者:Igal Arav;J. Gauntlett;M. Roberts;C. Rosen
- 通讯作者:Igal Arav;J. Gauntlett;M. Roberts;C. Rosen
More large N limits of 3d gauge theories
3d 规范理论的更大 N 限制
- DOI:10.1088/1751-8121/aa7e11
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Anderson L
- 通讯作者:Anderson L
T-duality in (2, 1) superspace
(2, 1) 超空间中的 T 对偶性
- DOI:10.1007/jhep06(2019)138
- 发表时间:2019
- 期刊:
- 影响因子:5.4
- 作者:Abou-Zeid M
- 通讯作者:Abou-Zeid M
Quiver tails and N = 1 $$ \mathcal{N}=1 $$ SCFTs from M5-branes
来自 M5 膜的箭袋尾部和 N = 1 $$ mathcal{N}=1 $$ SCFT
- DOI:10.1007/jhep03(2015)049
- 发表时间:2015
- 期刊:
- 影响因子:5.4
- 作者:Agarwal P
- 通讯作者:Agarwal P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Hull其他文献
High-fidelity tracking data gathered on minibus taxis in Stellenbosch, South Africa
- DOI:
10.1016/j.dib.2024.110732 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Christopher Hull;J.H. Giliomee;Katherine A. Collett;Malcolm McCulloch;M.J. Booysen - 通讯作者:
M.J. Booysen
The Generalised Complex Geometry of (p, q) Hermitian Geometries
- DOI:
10.1007/s00220-019-03488-3 - 发表时间:
2019-06-24 - 期刊:
- 影响因子:2.600
- 作者:
Christopher Hull;Ulf Lindström - 通讯作者:
Ulf Lindström
Eosinophilia-myalgia syndrome presenting with overlapping features of eosinophilic fasciitis and sarcoidal granulomas
- DOI:
10.1016/j.jdcr.2024.05.035 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Caroline J. Stone;Kelsey Lassen;James Abbott;Christopher Hull - 通讯作者:
Christopher Hull
40364 Fragile Hands: Targeting Non-Melanoma Skin Cancer on Elderly Hands Using with 595 nm Pulsed Dye Laser: Outcomes of 121 Cases
- DOI:
10.1016/j.jaad.2023.07.200 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Elliott Herron;Mark Herron;Christopher Hull;Steven Lobello - 通讯作者:
Steven Lobello
40838 Outcomes of 3400 shave biopsies on the clearance of nonmelanoma skin cancer: benefits and limitations
- DOI:
10.1016/j.jaad.2023.07.280 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
Elliott Herron;Christopher Hull;Steven Lobello;Mark Herron - 通讯作者:
Mark Herron
Christopher Hull的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Hull', 18)}}的其他基金
16 Supersymmetries - a half-way meeting in the City
16个超对称——城市的中途相遇
- 批准号:
EP/I001727/1 - 财政年份:2010
- 资助金额:
$ 201.63万 - 项目类别:
Research Grant
M-theory, Cosmology and Quantum Field Theory
M理论、宇宙学和量子场论
- 批准号:
ST/G000743/1 - 财政年份:2008
- 资助金额:
$ 201.63万 - 项目类别:
Research Grant
Generalised Geometric Structures in String Theory
弦理论中的广义几何结构
- 批准号:
EP/E031064/1 - 财政年份:2006
- 资助金额:
$ 201.63万 - 项目类别:
Research Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
- 批准号:
2338492 - 财政年份:2024
- 资助金额:
$ 201.63万 - 项目类别:
Continuing Grant
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
- 批准号:
EP/X014959/1 - 财政年份:2023
- 资助金额:
$ 201.63万 - 项目类别:
Research Grant
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
2304636 - 财政年份:2023
- 资助金额:
$ 201.63万 - 项目类别:
Standard Grant
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
- 批准号:
23K17661 - 财政年份:2023
- 资助金额:
$ 201.63万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Geometric structures on surfaces and harmonic maps
表面上的几何结构和调和图
- 批准号:
23KJ1468 - 财政年份:2023
- 资助金额:
$ 201.63万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 201.63万 - 项目类别:
Standard Grant
Reconsideration of the information geometric structures from the view point of deformed thermostatistics
从变形恒温学角度重新思考信息几何结构
- 批准号:
22K03431 - 财政年份:2022
- 资助金额:
$ 201.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 201.63万 - 项目类别:
Standard Grant
Geometric structures in low dimensions
低维几何结构
- 批准号:
RGPIN-2017-05403 - 财政年份:2022
- 资助金额:
$ 201.63万 - 项目类别:
Discovery Grants Program - Individual
Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
- 批准号:
22K03303 - 财政年份:2022
- 资助金额:
$ 201.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)