Exploitation of Pressurised Gyration as an Innovative Manufacturing Route for Nanofibrous Structures
利用加压回转作为纳米纤维结构的创新制造途径
基本信息
- 批准号:EP/L023059/1
- 负责人:
- 金额:$ 53.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There has been considerable interest in developing nanofibrous systems, composed of meshes of ultra-thin fibres, for usage in several key industrial applications, for example in pharmacy. In brief, such systems allow very favourable physical characteristics such as a high surface area to volume ratio which in turn allows rapid drug release. However, a major obstacle to such approaches is the possibility of producing such systems at a realistic scale. For example, well established techniques such as electrospinning can only generally produce gram quantities of material in an hour. Our proposal is that by using a pressure gyration technique developed at UCL we will be able to rapidly produce drug or active-loaded nanofibres in kilogram quantities, thereby rendering the use of such materials commercially feasible. The method basically consists of a cylinder with a bank of holes around its middle axis. By applying gas under pressure and rotating the system rapidly, it is possible to extrude a solution of the polymer from the holes under ambient temperatures, with the solvent being driven off to produce nanofibres on a surrounding collecting plate. We will expand further the capabilities of the pressurised gyration process by building a more upmarket and powerful manufacturing device. We will also study the physics of the process in greater detail in order to be able to process control and predict the output characteristics of the products. We have already demonstrated that the technique can produce such quantities of unloaded material, hence it is entirely reasonable to suggest that the approach can be used for pharmaceutically relevant systems. We plan to demonstrate and explore the utility of the approach using three important and well-defined application areas. Firstly, we will study polymeric fibres loaded with fine particulates so that we can develop capability to use pressurised gyration to manufacture bioactive scaffolds, graphene precursors (via graphene oxide-loaded polymeric meshes), antibacterial fibrous bandages/masks etc. Secondly, we will look at the formulation of poorly water-soluble drugs for oral administration. This is a major problem for the pharmaceutical industry, as a drug must dissolve before it is absorbed through the gastrointestinal tract. It is known that dispersing such drugs in polymers may enhance that dissolution rate; we argue that the nanofibres will be even more effective due to the porous nature of the mesh and the very high surface area of such a system. Thirdly, we suggest that this method may be used as an alternative to freeze drying, whereby proteins are prepared in a solid form that may be easily reconstituted prior to injection on addition of aqueous solvent, a process that is expensive and physically and chemically traumatic for the protein. Hence if we are able to show that the pressure gyration technique also produces a stable, solid and easily reconstituted physical form then the implications for pharmaceutical production of injections would be considerable. By exploring these three application we will not only develop pre-competitive knowledge regarding the systems in question but we would also be introducing the pressure gyration technique into the industrial arena. In particular, we will be working with Astra Zeneca who have considerable expertise and interest in developing non-conventional pharmaceutical dosage forms to suit the requirements of their drug products; the company will work closely with the academic partners to advise on applicability and scale-up potential.
人们对开发由超薄纤维网组成的纳米纤维系统非常感兴趣,这种系统可用于几个关键的工业应用,例如制药。简而言之,这种系统允许非常有利的物理特性,例如高表面积体积比,从而允许快速释放药物。然而,这种方法的一个主要障碍是以实际规模生产这种系统的可能性。例如,成熟的技术,如静电纺丝,一般只能在一小时内生产克数量的材料。我们的建议是,通过使用伦敦大学学院开发的压力旋转技术,我们将能够快速生产出公斤数量的药物或活性负载纳米纤维,从而使这种材料的使用在商业上可行。该方法基本上包括一个圆柱体,在其中轴周围有一排孔。通过在压力下施加气体并快速旋转系统,可以在环境温度下从孔中挤出聚合物溶液,溶剂被排出,在周围的收集板上产生纳米纤维。我们将通过建立一个更高端、更强大的制造设备,进一步扩大加压旋转过程的能力。我们还将更详细地研究过程的物理特性,以便能够进行过程控制和预测产品的输出特性。我们已经证明,该技术可以产生如此数量的卸载材料,因此,建议该方法可用于药学相关系统是完全合理的。我们计划使用三个重要且定义良好的应用程序领域来演示和探索该方法的实用性。首先,我们将研究装载细颗粒的聚合物纤维,这样我们就可以开发利用加压旋转制造生物活性支架、石墨烯前体(通过负载石墨烯的聚合物网)、抗菌纤维绷带/口罩等的能力。其次,我们将研究水溶性差的口服药物的配方。这是制药业面临的一个主要问题,因为药物在通过胃肠道被吸收之前必须溶解。众所周知,将这类药物分散在聚合物中可以提高溶解速度;我们认为,由于网状结构的多孔性和这种系统的非常高的表面积,纳米纤维将更加有效。第三,我们建议这种方法可以作为冷冻干燥的替代方法,在冷冻干燥中,蛋白质以固体形式制备,可以在添加水溶液注射之前轻松重构,这一过程是昂贵的,并且对蛋白质的物理和化学创伤。因此,如果我们能够证明压力旋转技术也能产生稳定、固体和易于重组的物理形式,那么对注射剂的制药生产的影响将是相当大的。通过探索这三种应用,我们不仅可以开发有关系统的竞争前知识,而且还可以将压力旋转技术引入工业领域。特别是,我们将与Astra Zeneca合作,Astra Zeneca在开发符合其药品要求的非常规药物剂型方面具有相当大的专业知识和兴趣;该公司将与学术合作伙伴密切合作,就适用性和扩大潜力提供建议。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alleviating the toxicity concerns of antibacterial cinnamon-polycaprolactone biomaterials for healthcare-related biomedical applications.
- DOI:10.1002/mco2.71
- 发表时间:2021-06
- 期刊:
- 影响因子:9.9
- 作者:Ahmed J;Gultekinoglu M;Bayram C;Kart D;Ulubayram K;Edirisinghe M
- 通讯作者:Edirisinghe M
Making nanofibres of mucoadhesive polymer blends for vaginal therapies
- DOI:10.1016/j.eurpolymj.2015.07.006
- 发表时间:2015-09-01
- 期刊:
- 影响因子:6
- 作者:Brako, Francis;Raimi-Abraham, Bahijja;Edirisinghe, Mohan
- 通讯作者:Edirisinghe, Mohan
Pressure-Spun Fibrous Surgical Sutures for Localized Antibacterial Delivery: Development, Characterization, and In Vitro Evaluation.
- DOI:10.1021/acsami.3c07956
- 发表时间:2023-10-04
- 期刊:
- 影响因子:9.5
- 作者:Altun, Esra;Bayram, Cem;Gultekinoglu, Merve;Matharu, Rupy;Delbusso, Angelo;Homer-Vanniasinkam, Shervanthi;Edirisinghe, Mohan
- 通讯作者:Edirisinghe, Mohan
Core-sheath polymer nanofiber formation by the simultaneous application of rotation and pressure in a novel purpose-designed vessel
- DOI:10.1063/5.0071257
- 发表时间:2021-12-01
- 期刊:
- 影响因子:15
- 作者:Alenezi, Hussain;Cam, Muhammet Emin;Edirisinghe, Mohan
- 通讯作者:Edirisinghe, Mohan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohan Edirisinghe其他文献
Ultrasound - assisted microfluidics based microbubble mediated synthesis of nanoparticle - reinforced dual porous scaffolds for tissue regeneration
基于超声辅助微流体的微泡介导的用于组织再生的纳米颗粒增强双孔支架合成
- DOI:
10.1016/j.bioadv.2025.214347 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:6.000
- 作者:
Aditya Teja Guduru;Dhiraj Bhatia;Mohan Edirisinghe;Sameer Dalvi - 通讯作者:
Sameer Dalvi
Valorization of diverse waste-derived nanocellulose for multifaceted applications: A review
用于多方面应用的各种源自废物的纳米纤维素的价值评估:综述
- DOI:
10.1016/j.ijbiomac.2024.136130 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:8.500
- 作者:
Mehrdad Ghamari;Dongyang Sun;Yanqi Dai;Chan Hwang See;Hongnian Yu;Mohan Edirisinghe;Senthilarasu Sundaram - 通讯作者:
Senthilarasu Sundaram
A battery powered approach to pressurised spinning: Introducing the sustainability concept and shaping the future of fibre production methodologies
一种电池驱动的加压纺丝方法:引入可持续性概念并塑造纤维生产方法的未来
- DOI:
10.1016/j.apenergy.2025.126331 - 发表时间:
2025-11-01 - 期刊:
- 影响因子:11.000
- 作者:
Mehmet Onur Aydogdu;Angelo Delbusso;Mohan Edirisinghe - 通讯作者:
Mohan Edirisinghe
The tailored manufacturing of core (cellulose acetate)-sheath (polyvinylpyrrolidone) polymeric nanofibers for biphasic drug delivery systems using pressure-spinning
使用压力纺丝技术为双相药物递送系统定制制造核(醋酸纤维素)-鞘(聚乙烯吡咯烷酮)聚合物纳米纤维
- DOI:
10.1016/j.matdes.2025.113939 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:7.900
- 作者:
Nanang Qosim;Gareth R. Williams;Mohan Edirisinghe - 通讯作者:
Mohan Edirisinghe
Generation of biomaterial particles with controlled dimensions via electrospraying
通过电喷雾生成尺寸受控的生物材料颗粒
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xiang Li;Gaorong Han;Jie Huang;Mohan Edirisinghe;William Bonfield - 通讯作者:
William Bonfield
Mohan Edirisinghe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohan Edirisinghe', 18)}}的其他基金
Creation and Exploitation of Pressurised Gyration to Manufacture Core-Sheath Structures:
创建和利用加压回转来制造芯鞘结构:
- 批准号:
EP/S016872/1 - 财政年份:2018
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Automated Patterning of Bioactive Deposits on Advanced Biomaterials for Orthopaedic Applications
用于骨科应用的先进生物材料上生物活性沉积物的自动图案化
- 批准号:
EP/L024225/1 - 财政年份:2014
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Exploitation of a novel multi-stage electrohydrodynamic device for the manufacture of therapeutic products
开发用于制造治疗产品的新型多级电流体动力装置
- 批准号:
EP/J01334X/1 - 财政年份:2012
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Magnetite synthesis in biomimietic nanovesicles: innovative synthetic routes to tailored bio-nanomagnets
仿生纳米囊泡中的磁铁矿合成:定制生物纳米磁体的创新合成路线
- 批准号:
EP/I032428/1 - 财政年份:2012
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Novel interlocked bioactive coating on metallic substrates for orthopaedic applications
用于骨科应用的金属基材上的新型联锁生物活性涂层
- 批准号:
EP/H007342/1 - 财政年份:2009
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
International Meeting on Developments in Ceramic Science and Engineering: The last 50 years
陶瓷科学与工程发展国际会议:过去 50 年
- 批准号:
EP/F056400/1 - 财政年份:2008
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Intercollegiate Platform on Powder-Based Synthesis and Modelling
粉体合成与建模校际平台
- 批准号:
EP/E045839/1 - 财政年份:2008
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
相似海外基金
Forced-Pressurised Air Frying System (F-PAFS)
强制加压空气油炸系统 (F-PAFS)
- 批准号:
10035309 - 财政年份:2022
- 资助金额:
$ 53.38万 - 项目类别:
Collaborative R&D
Investigation of The Surface Properties of Plasma Treated Pressurised Metered Dose Inhaler Canisters and Their Influence on Formulation Performance
等离子体处理的加压计量吸入器罐的表面特性及其对制剂性能的影响的研究
- 批准号:
2599356 - 财政年份:2021
- 资助金额:
$ 53.38万 - 项目类别:
Studentship
Environmental Crack Growth of Structural Materials in Pressurised Gas (ENCAMP)
压缩气体中结构材料的环境裂纹扩展 (ENCAMP)
- 批准号:
103621 - 财政年份:2018
- 资助金额:
$ 53.38万 - 项目类别:
Collaborative R&D
Creation and Exploitation of Pressurised Gyration to Manufacture Core-Sheath Structures:
创建和利用加压回转来制造芯鞘结构:
- 批准号:
EP/S016872/1 - 财政年份:2018
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant
Investigating the Effect of Chemical Species on Pellet Cladding Interaction in Pressurised Water Reactor Fuel using Hybrid Quantum Mechanics Molecular
使用混合量子力学分子研究化学物质对压水堆燃料中球团包壳相互作用的影响
- 批准号:
1857821 - 财政年份:2016
- 资助金额:
$ 53.38万 - 项目类别:
Studentship
Inhaled drug delivery: Mechanisms by which pressurised metered dose inhaler excipients affect respiratory membrane biophysics.
吸入药物输送:加压定量吸入器赋形剂影响呼吸膜生物物理学的机制。
- 批准号:
1764834 - 财政年份:2016
- 资助金额:
$ 53.38万 - 项目类别:
Studentship
The tightness behaviour of pressurised joints with and without seals
带密封件和不带密封件的受压接头的密封性能
- 批准号:
239166-2011 - 财政年份:2015
- 资助金额:
$ 53.38万 - 项目类别:
Discovery Grants Program - Individual
Dynamic behaviour of a pressurised membrane
加压膜的动态行为
- 批准号:
470634-2014 - 财政年份:2014
- 资助金额:
$ 53.38万 - 项目类别:
Engage Grants Program
The tightness behaviour of pressurised joints with and without seals
带密封件和不带密封件的受压接头的密封性能
- 批准号:
239166-2011 - 财政年份:2014
- 资助金额:
$ 53.38万 - 项目类别:
Discovery Grants Program - Individual
MAC-EXP: Development of a pressurised sampling, experimentation and cultivation system for deep-sea sediments
MAC-EXP:开发深海沉积物加压采样、实验和培养系统
- 批准号:
NE/I023465/1 - 财政年份:2013
- 资助金额:
$ 53.38万 - 项目类别:
Research Grant














{{item.name}}会员




