Automated Patterning of Bioactive Deposits on Advanced Biomaterials for Orthopaedic Applications

用于骨科应用的先进生物材料上生物活性沉积物的自动图案化

基本信息

  • 批准号:
    EP/L024225/1
  • 负责人:
  • 金额:
    $ 33.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Template-assisted electrohydrodynamic atomisation (TAEA) spray-patterning is a novel, recently patented, method which allows the production of interlocked bioactive coatings on flat metallic substrates. The pattern geometry can be varied by simply changing the template geometry and dimensions. The process is based on stable jetting of a flowing liquid/suspension subjected to an electric field and is carried out at the ambient temperature and pressure. It is easy to control this rapid process using the applied voltage, the flow rate and the working (collection) distance between the flow nozzle and the substrate. Because of the interlocking of the bioactive coating with a patterned buffer layer coating, previously deposited via TAEA, this method of bioactive patterning also allows better adhesion of the coating. Also, the biological response to TAEA patterned bioactive deposits by cellular entities has proven to be more favourable. These factors compare very favourably when considering the fact that conventional plasma spraying, which is usually used to just plainly cover-coat bioactive materials on metallic substrates, is carried out at extremely high temperatures (about three orders of magnitude higher) and is difficult to control especially when it comes to the preparation of thin coatings. According to industry sources, economic loss due to malfunction and shutdown time involved with plasma spraying is very significant and the industry is looking to uncover and implement alternatives. This project proposed is concerned with investigating the use of TAEA bioactive patterning on curved surfaces in order that the process is ideal for the preparation of clinical inserts and implants, especially for the orthopaedics sector which is the business of the industrial project partner. This will ensure that the process can be implemented in many real implants which have both flat and curved surfaces. The project work endeavours to systematically investigate TAEA spraying of bioactive nanostructured hydroxyapatite onto curved biometallic substrates, such as orthopaedic titanium alloys, starting from well-characterised suspensions and solutions - the viscosity, surface tension and electrical conductivity of which affect stable jetting. Convex and concave titanium alloy substrates of different diameter will be prepared, together with a variety of fitting curved copper mesh-templates which allow different patterns to be deposited - lined, hexagonal and square. One key difference between flat and curved surface TAEA will be the varying working distance encountered as spraying takes place. This can result in uneven coating thicknesses and inhomogeneties. In order to counteract this, an automated conveyer system which will enable the substrate to be held and moved in and out and/or rotated will be put in place, and the design, construction and implementation of this strategy will be a key part of the project. The microstructures of the curved surface TAEA coatings produced will be studied mainly by electron microscopy. Adhesion and mechanical properties of the coatings will be fully assessed using scratch- and nano-indentation techniques; evaluating adhesion, hardness/scratch hardness and the generation of load-displacement data from which the elastic modulus and the yield strength will be estimated. An attempt will also be made to calculate fracture toughness and residual stresses using any indentation cracks which might be present on the coatings. The coatings will also be subjected to cell culture tests in order to ascertain bioactivity. Two other aspects will also be investigated: Firstly, using an improved and simpler on-line heat treatment to consolidate the titania buffer layer on the substrate will be tried out. Secondly, we shall attempt to do co-axial (co-flow) TAEA which will pave the way for composite polymer-ceramic bioactive deposits or bioactive deposits doped with other ingredients like antibiotics and growth factors.
模板辅助电流体雾化(TAEA)喷雾图案化是一种新的、最近获得专利的方法,它允许在平板金属衬底上生产互锁的生物活性涂层。只需更改模板几何形状和尺寸即可改变图案几何形状。该过程基于在电场作用下流动的液体/悬浮液的稳定喷射,并在环境温度和压力下进行。通过施加电压、流速和流动喷嘴与衬底之间的工作(收集)距离,可以很容易地控制这一快速过程。由于生物活性涂层与先前通过TAEA沉积的图案化缓冲层涂层的互锁,这种生物活性图案化方法还允许涂层更好的附着力。此外,细胞实体对TAEA图案化生物活性沉积物的生物反应被证明是更有利的。考虑到通常只在金属基材上覆盖生物活性材料的常规等离子喷涂是在极高的温度(大约高出三个数量级)下进行的,并且很难控制,特别是在制备薄涂层时,这些因素非常有利。据业内消息人士称,等离子喷涂故障和停机时间造成的经济损失非常大,该行业正在寻求发现和实施替代方案。该项目旨在研究在曲面上使用TAEA生物活性图案,以使该工艺适用于临床植入物和植入物的制备,特别是作为工业项目合作伙伴业务的整形外科部门。这将确保该工艺可以在许多具有平面和曲面的真实植入物中实施。该项目致力于系统地研究生物活性纳米结构羟基磷灰石在弯曲的生物金属基材(如整形外科钛合金)上的喷涂,从特性良好的悬浮液和溶液开始--其粘度、表面张力和导电性会影响稳定的喷射。将制备不同直径的凸形和凹形钛合金基板,以及各种适合的弧形铜网模板,允许沉积不同的图案-衬里、六角形和正方形。平面和曲面TAEA之间的一个关键区别是在进行喷涂时会遇到不同的工作距离。这可能会导致涂层厚度不均匀和不均匀。为了抵消这一点,将建立一个自动输送系统,使基材能够保持和移入移出和/或旋转,这一战略的设计、施工和实施将是该项目的关键部分。表面涂层的微观结构将主要用电子显微镜进行研究。将使用划痕和纳米压痕技术来全面评估涂层的附着力和机械性能;评估附着力、硬度/划痕硬度,并生成载荷-位移数据,根据该数据可以估计弹性模数和屈服强度。还将尝试使用涂层上可能存在的任何压痕裂纹来计算断裂韧性和残余应力。涂层还将接受细胞培养测试,以确定生物活性。还将研究另外两个方面:第一,尝试使用一种改进的、更简单的在线热处理方法来加固衬底上的二氧化钛缓冲层。其次,我们将尝试做同轴(同流)TAEA,这将为复合聚合物-陶瓷生物活性沉积或掺杂抗生素和生长因子等其他成分的生物活性沉积铺平道路。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bioinspired electrohydrodynamic ceramic patterning of curved metallic substrates
  • DOI:
    10.1680/bbn.14.00020
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Nithyanandan;S. Mahalingam;Jie Huang;S. Rehman;E. Draper;M. Edirisinghe
  • 通讯作者:
    A. Nithyanandan;S. Mahalingam;Jie Huang;S. Rehman;E. Draper;M. Edirisinghe
Figure S1 from PEEK surface modification by fast ambient-temperature sulfonation for bone implant applications
图 S1 来自通过快速环境温度磺化进行骨植入应用的 PEEK 表面改性
  • DOI:
    10.6084/m9.figshare.7764236
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang W
  • 通讯作者:
    Wang W
Figure S2 from PEEK surface modification by fast ambient-temperature sulfonation for bone implant applications
图 S2 来自通过快速环境温度磺化进行骨植入应用的 PEEK 表面改性
  • DOI:
    10.6084/m9.figshare.7764242
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang W
  • 通讯作者:
    Wang W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohan Edirisinghe其他文献

Ultrasound - assisted microfluidics based microbubble mediated synthesis of nanoparticle - reinforced dual porous scaffolds for tissue regeneration
基于超声辅助微流体的微泡介导的用于组织再生的纳米颗粒增强双孔支架合成
  • DOI:
    10.1016/j.bioadv.2025.214347
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Aditya Teja Guduru;Dhiraj Bhatia;Mohan Edirisinghe;Sameer Dalvi
  • 通讯作者:
    Sameer Dalvi
Valorization of diverse waste-derived nanocellulose for multifaceted applications: A review
用于多方面应用的各种源自废物的纳米纤维素的价值评估:综述
  • DOI:
    10.1016/j.ijbiomac.2024.136130
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    8.500
  • 作者:
    Mehrdad Ghamari;Dongyang Sun;Yanqi Dai;Chan Hwang See;Hongnian Yu;Mohan Edirisinghe;Senthilarasu Sundaram
  • 通讯作者:
    Senthilarasu Sundaram
A battery powered approach to pressurised spinning: Introducing the sustainability concept and shaping the future of fibre production methodologies
一种电池驱动的加压纺丝方法:引入可持续性概念并塑造纤维生产方法的未来
  • DOI:
    10.1016/j.apenergy.2025.126331
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Mehmet Onur Aydogdu;Angelo Delbusso;Mohan Edirisinghe
  • 通讯作者:
    Mohan Edirisinghe
The tailored manufacturing of core (cellulose acetate)-sheath (polyvinylpyrrolidone) polymeric nanofibers for biphasic drug delivery systems using pressure-spinning
使用压力纺丝技术为双相药物递送系统定制制造核(醋酸纤维素)-鞘(聚乙烯吡咯烷酮)聚合物纳米纤维
  • DOI:
    10.1016/j.matdes.2025.113939
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Nanang Qosim;Gareth R. Williams;Mohan Edirisinghe
  • 通讯作者:
    Mohan Edirisinghe
Generation of biomaterial particles with controlled dimensions via electrospraying
通过电喷雾生成尺寸受控的生物材料颗粒
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiang Li;Gaorong Han;Jie Huang;Mohan Edirisinghe;William Bonfield
  • 通讯作者:
    William Bonfield

Mohan Edirisinghe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohan Edirisinghe', 18)}}的其他基金

Creation and Exploitation of Pressurised Gyration to Manufacture Core-Sheath Structures:
创建和利用加压回转来制造芯鞘结构:
  • 批准号:
    EP/S016872/1
  • 财政年份:
    2018
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant
Exploitation of Pressurised Gyration as an Innovative Manufacturing Route for Nanofibrous Structures
利用加压回转作为纳米纤维结构的创新制造途径
  • 批准号:
    EP/L023059/1
  • 财政年份:
    2014
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant
Exploitation of a novel multi-stage electrohydrodynamic device for the manufacture of therapeutic products
开发用于制造治疗产品的新型多级电流体动力装置
  • 批准号:
    EP/J01334X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant
Magnetite synthesis in biomimietic nanovesicles: innovative synthetic routes to tailored bio-nanomagnets
仿生纳米囊泡中的磁铁矿合成:定制生物纳米磁体的创新合成路线
  • 批准号:
    EP/I032428/1
  • 财政年份:
    2012
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant
Novel interlocked bioactive coating on metallic substrates for orthopaedic applications
用于骨科应用的金属基材上的新型联锁生物活性涂层
  • 批准号:
    EP/H007342/1
  • 财政年份:
    2009
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant
International Meeting on Developments in Ceramic Science and Engineering: The last 50 years
陶瓷科学与工程发展国际会议:过去 50 年
  • 批准号:
    EP/F056400/1
  • 财政年份:
    2008
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant
Intercollegiate Platform on Powder-Based Synthesis and Modelling
粉体合成与建模校际平台
  • 批准号:
    EP/E045839/1
  • 财政年份:
    2008
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant

相似海外基金

Innovative Double Patterning Strategies for Integrated Circuit Manufacture
集成电路制造的创新双图案化策略
  • 批准号:
    LP230100313
  • 财政年份:
    2024
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Linkage Projects
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Standard Grant
Patterning Mesoscale Chirality by Guided Crystal Twisting
通过引导晶体扭曲形成中尺度手性图案
  • 批准号:
    2325911
  • 财政年份:
    2024
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Standard Grant
Atypical Chemokine Receptors orchestrate changes in vascular patterning during fibrotic liver disease via Endothelial-to-Mesenchymal Transition.
非典型趋化因子受体通过内皮-间质转化协调纤维化肝病期间血管模式的变化。
  • 批准号:
    MR/Y013751/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant
Epidermal patterning
表皮图案
  • 批准号:
    BB/Y000722/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Grant
Charge Patterning and Molecular Interactions in the Phase Behavior of Polyelectrolyte/Particle Solutions
聚电解质/颗粒溶液相行为中的电荷模式和分子相互作用
  • 批准号:
    2347031
  • 财政年份:
    2024
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Continuing Grant
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
Signaling dynamics in the control of ectoderm patterning and morphogenesis
控制外胚层模式和形态发生的信号动力学
  • 批准号:
    10623412
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
Otganotypic vascular patterning regulated by cell-to-cell communication
细胞间通讯调节的基因型血管模式
  • 批准号:
    23H02661
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Super-antibacterial Ti surfaces via pulse laser 3D patterning of Ag followed by catalytic ceramic conversion
通过脉冲激光对银进行 3D 图案化,然后进行催化陶瓷转化,获得超级抗菌钛表面
  • 批准号:
    2882191
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了