Mathematical fundamentals of Metamaterials for multiscale Physics and Mechanics
多尺度物理和力学超材料的数学基础
基本信息
- 批准号:EP/L024926/1
- 负责人:
- 金额:$ 325.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Metamaterials are materials that are man-made and can have properties that no natural material could have, for instance light entering a metamaterial slab can be bent in the opposite manner to that which one would usually expect. This is not merely a scientific curiosity, it can have profound implications leading to sub-wavelength imaging, focusing, invisibility cloaks amongst other effects and this, in turn, can lead to materials with unexpected and novel properties. Much of the interest in metamaterials has thus far been in optics and electromagnetism, but it is clear that the underlying ideas should be applicable in other contexts such as elasticity, diffusion, structured materials, acoustics and even water waves. There is an abundance of important applications: designing thermal cloaks for keeping sensitive electronics cool, creating acoustic metamaterials for underwater stealth, wave by-pass systems for structural protection of buildings or key components, all of which are outside the optical context of metamaterials as they currently exist.A key issue in creating a metamaterial is its design, normally as a periodic medium with a precise micro-structured geometry, and the frequency at which it operates. As Metamaterials are beginning to achieve a certain maturity in optics the time is ripe to move this knowledge coherently into other fields, it is also timely to enrich Mathematics with the exciting conceptual problems created in Metamaterials and enrich the Metamaterials toolkit with sophisticated Mathematical techniques. This proposal aims to use the transformative tools and unifying ideas of Mathematics to move the physics of Metamaterials into research areas such as Elasticity, Acoustics, Structural Mechanics and Diffusion where Metamaterials have barely been investigated, but where there will undoubtedly be impact and applications. By working closely with Physicists it will enrich and empower the existing Metamaterials community by bringing sophisticated numerical and theoretical methods to the fore.
超材料是人造材料,具有天然材料不具备的特性,例如,进入超材料板的光可以以与人们通常期望的相反的方式弯曲。这不仅仅是一个科学上的好奇心,它可以产生深远的影响,导致亚波长成像,聚焦,隐形斗篷以及其他效果,这反过来又可以导致具有意想不到和新颖特性的材料。迄今为止,人们对超材料的兴趣主要集中在光学和电磁学方面,但很明显,其基本思想应该适用于其他领域,如弹性、扩散、结构材料、声学甚至水波。有很多重要的应用:设计热斗篷来保持敏感的电子冷却,创造水下隐身的声学超材料,用于建筑物或关键部件的结构保护的波旁通系统,所有这些都在超材料的光学范围之外,因为它们目前存在。创造超材料的一个关键问题是它的设计,通常是一个具有精确微观结构几何形状的周期性介质,以及它的工作频率。随着超材料在光学方面开始达到一定的成熟,将这些知识连贯地转移到其他领域的时机已经成熟,也适时地用超材料中创造的令人兴奋的概念问题来丰富数学,并用复杂的数学技术丰富超材料工具箱。本提案旨在利用数学的变革工具和统一思想,将超材料的物理学引入弹性、声学、结构力学和扩散等研究领域,这些领域几乎没有对超材料进行过研究,但毫无疑问会产生影响和应用。通过与物理学家密切合作,它将通过将复杂的数值和理论方法带到前台,丰富和增强现有的超材料社区。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental realization of broadband control of water-wave-energy amplification in chirped arrays
- DOI:10.1103/physrevfluids.5.062801
- 发表时间:2020-06
- 期刊:
- 影响因子:2.7
- 作者:A. Archer;Hugh Wolgamot;J. Orszaghova;Luke G. Bennetts;M. Peter;R. Craster
- 通讯作者:A. Archer;Hugh Wolgamot;J. Orszaghova;Luke G. Bennetts;M. Peter;R. Craster
Clamped seismic metamaterials: ultra-low frequency stop bands
- DOI:10.1088/1367-2630/aa6e21
- 发表时间:2017-06-16
- 期刊:
- 影响因子:3.3
- 作者:Achaoui, Y.;Antonakakis, T.;Guenneau, S.
- 通讯作者:Guenneau, S.
Tunable plasmonic metasurface for perfect absorption
- DOI:10.1051/epjam/2017001
- 发表时间:2017-02-17
- 期刊:
- 影响因子:1.6
- 作者:Huidobro, Paloma Arroyo;Maier, Stefan A.;Pendry, John B.
- 通讯作者:Pendry, John B.
Accelerated convergence to equilibrium and reduced asymptotic variance for Langevin dynamics using Stratonovich perturbations
使用 Stratonovich 扰动加速收敛到平衡并减少 Langevin 动力学的渐近方差
- DOI:10.1016/j.crma.2019.04.008
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Abdulle A
- 通讯作者:Abdulle A
Broadband control of water wave energy amplification in chirped arrays
啁啾阵列中水波能量放大的宽带控制
- DOI:10.48550/arxiv.1910.13103
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Archer A
- 通讯作者:Archer A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Craster其他文献
An <em>hp</em>-adaptive sampling algorithm for dispersion relation reconstruction of 3D photonic crystals
- DOI:
10.1016/j.jcp.2024.113572 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Yueqi Wang;Richard Craster;Guanglian Li - 通讯作者:
Guanglian Li
Controlling the propagation of flexural elastic waves with ceramic metatiles
- DOI:
10.1016/j.ijmecsci.2025.110520 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:9.400
- 作者:
Brahim Lemkalli;Ozgur T. Tugut;Qingxiang Ji;Richard Craster;Sébastien Guenneau;Muamer Kadic;Claudio Bizzaglia;Bogdan Ungureanu - 通讯作者:
Bogdan Ungureanu
Richard Craster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Craster', 18)}}的其他基金
Mathematical Analysis of Multi-dimensional Topological Edge Modes
多维拓扑边缘模式的数学分析
- 批准号:
EP/X027422/1 - 财政年份:2022
- 资助金额:
$ 325.1万 - 项目类别:
Fellowship
Embedding techniques for directivities in acoustics and elasticity
用于声学和弹性方向性的嵌入技术
- 批准号:
EP/D045576/1 - 财政年份:2006
- 资助金额:
$ 325.1万 - 项目类别:
Research Grant
相似国自然基金
The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
- 批准号:
EP/X015351/1 - 财政年份:2024
- 资助金额:
$ 325.1万 - 项目类别:
Research Grant
CAREER: Towards Fundamentals of Adaptive, Collaborative and Intelligent Radar Sensing and Perception
职业:探索自适应、协作和智能雷达传感和感知的基础知识
- 批准号:
2340029 - 财政年份:2024
- 资助金额:
$ 325.1万 - 项目类别:
Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
- 批准号:
2342253 - 财政年份:2024
- 资助金额:
$ 325.1万 - 项目类别:
Standard Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 325.1万 - 项目类别:
Continuing Grant
CAREER: Fundamentals and Applications of Electrochemically Active Nanofluids for Energy Storage and Conversion
职业:用于能量存储和转换的电化学活性纳米流体的基础和应用
- 批准号:
2338147 - 财政年份:2024
- 资助金额:
$ 325.1万 - 项目类别:
Continuing Grant
Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
- 批准号:
EP/X015327/1 - 财政年份:2024
- 资助金额:
$ 325.1万 - 项目类别:
Research Grant
Spray cooling high power dissipation applications (SANGRIA): From Fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础知识到设计
- 批准号:
EP/X015335/1 - 财政年份:2024
- 资助金额:
$ 325.1万 - 项目类别:
Research Grant
CAREER: Fundamentals of Conformational and Surface Water Dynamics in Supramolecular Nanofibers
职业:超分子纳米纤维的构象和表面水动力学基础
- 批准号:
2331196 - 财政年份:2023
- 资助金额:
$ 325.1万 - 项目类别:
Continuing Grant
Fundamentals of Heterogeneous Nucleation with Application to the Optimization of Horizontal Ribbon Growth
异质成核的基础及其在水平带生长优化中的应用
- 批准号:
2317674 - 财政年份:2023
- 资助金额:
$ 325.1万 - 项目类别:
Continuing Grant
Fundamentals and applications of tropical schemes
热带计划的基础和应用
- 批准号:
EP/X02752X/1 - 财政年份:2023
- 资助金额:
$ 325.1万 - 项目类别:
Fellowship