Mathematical Analysis of Multi-dimensional Topological Edge Modes
多维拓扑边缘模式的数学分析
基本信息
- 批准号:EP/X027422/1
- 负责人:
- 金额:$ 24.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this proposal is to develop novel mathematical techniques for analysing topological edge modes that will inform rapid advancements in metamaterial design. This proposal will yield new analytic methods capable of describing the rich variety of multi-dimensional metamaterial geometries being developed. This will lead to rigorous results relating the properties of topological edge modes (localization strength, robustness, eigenfrequency) with those of the underlying materials (topological indices, symmetry) in multi-dimensional systems. This will reveal fundamental new insight into the fundamental physics and the deliverables (theorems, formulas, codes) will be used to rapidly and accurately guide metamaterial design. It will also overcome the reliance on perturbative methods. This will be achieved by developing approaches for modelling scattering by almost periodic (semi-infinite, randomly perturbed, quasi-periodic) structures with general geometries in dimension greater than one. These will combine my extensive expertise in boundary integral methods with the expertise of the host group (led by Richard Craster, at Imperial College London) in the Wiener-Hopf method. Additionally, input from the unique, world-leading expertise in topological waveguide design possessed by the host group and other members of the Imperial College Centre for Plasmonics and Metamaterials will help guide the project towards achieving high-impact, cutting-edge results. This fellowship will further my career by giving me the opportunity to conduct an independent program of research and to develop high-profile collaborations within the Imperial College Centre for Plasmonics and Metamaterials. I will develop the management, communication and technical skills needed for a career of applied mathematical research and to achieve my goal of becoming a European leader on the mathematical analysis of metamaterials.
该提案的目标是开发用于分析拓扑边缘模式的新颖数学技术,这将为超材料设计的快速进步提供信息。该提案将产生新的分析方法,能够描述正在开发的丰富多样的多维超材料几何形状。这将产生严格的结果,将拓扑边缘模式的属性(定位强度、鲁棒性、本征频率)与多维系统中的基础材料的属性(拓扑指数、对称性)联系起来。这将揭示对基础物理学的基本新见解,并且可交付成果(定理、公式、代码)将用于快速、准确地指导超材料设计。它还将克服对微扰方法的依赖。这将通过开发对维度大于一的一般几何形状的几乎周期性(半无限、随机扰动、准周期性)结构的散射进行建模的方法来实现。这些将把我在边界积分方法方面的广泛专业知识与主办小组(由伦敦帝国理工学院的理查德·克拉斯特领导)在维纳-霍普夫方法方面的专业知识结合起来。此外,主办团队和帝国理工学院等离激元和超材料中心其他成员在拓扑波导设计方面拥有独特的、世界领先的专业知识,他们的投入将有助于指导该项目取得高影响力的尖端成果。该奖学金将让我有机会进行独立的研究项目并在帝国理工学院等离激元和超材料中心开展高调的合作,从而进一步推动我的职业生涯。我将培养应用数学研究职业所需的管理、沟通和技术技能,并实现成为欧洲超材料数学分析领导者的目标。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graded Quasiperiodic Metamaterials Perform Fractal Rainbow Trapping
分级准周期超材料执行分形彩虹捕获
- DOI:10.1103/physrevlett.131.177001
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Davies B
- 通讯作者:Davies B
Code for "Exponentially localised interface eigenmodes in finite chains of resonators"
“有限谐振器链中的指数局部界面本征模式”的代码
- DOI:10.5281/zenodo.10361316
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Barandun S
- 通讯作者:Barandun S
Tunable topological edge modes in Su-Schrieffer-Heeger arrays
Su-Schrieffer-Heeger 阵列中的可调谐拓扑边缘模式
- DOI:10.1063/5.0152172
- 发表时间:2023
- 期刊:
- 影响因子:4
- 作者:Chaplain G
- 通讯作者:Chaplain G
Convergence Rates for Defect Modes in Large Finite Resonator Arrays
大型有限谐振器阵列中缺陷模式的收敛率
- DOI:10.1137/23m1575937
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Ammari H
- 通讯作者:Ammari H
Landscape of wave focusing and localization at low frequencies
- DOI:10.1111/sapm.12659
- 发表时间:2023-11-28
- 期刊:
- 影响因子:2.7
- 作者:Davies,Bryn;Lou,Yiqi
- 通讯作者:Lou,Yiqi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Craster其他文献
An <em>hp</em>-adaptive sampling algorithm for dispersion relation reconstruction of 3D photonic crystals
- DOI:
10.1016/j.jcp.2024.113572 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Yueqi Wang;Richard Craster;Guanglian Li - 通讯作者:
Guanglian Li
Controlling the propagation of flexural elastic waves with ceramic metatiles
- DOI:
10.1016/j.ijmecsci.2025.110520 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:9.400
- 作者:
Brahim Lemkalli;Ozgur T. Tugut;Qingxiang Ji;Richard Craster;Sébastien Guenneau;Muamer Kadic;Claudio Bizzaglia;Bogdan Ungureanu - 通讯作者:
Bogdan Ungureanu
Richard Craster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Craster', 18)}}的其他基金
Mathematical fundamentals of Metamaterials for multiscale Physics and Mechanics
多尺度物理和力学超材料的数学基础
- 批准号:
EP/L024926/1 - 财政年份:2014
- 资助金额:
$ 24.26万 - 项目类别:
Research Grant
Embedding techniques for directivities in acoustics and elasticity
用于声学和弹性方向性的嵌入技术
- 批准号:
EP/D045576/1 - 财政年份:2006
- 资助金额:
$ 24.26万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Trans-modal Analysis: A Mathematical and Computational Framework for Equity Assessment of Multi-modal STEM Learning Processes
跨模态分析:多模态 STEM 学习过程公平评估的数学和计算框架
- 批准号:
2201723 - 财政年份:2022
- 资助金额:
$ 24.26万 - 项目类别:
Continuing Grant
Time series multi-omics and mathematical analysis of mitochondrial metabolic pathways in obesity and prediabetes
肥胖和糖尿病前期线粒体代谢途径的时间序列多组学和数学分析
- 批准号:
20K17537 - 财政年份:2020
- 资助金额:
$ 24.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mathematical analysis for multi-component system of partial differential equations
多分量偏微分方程组的数学分析
- 批准号:
19H01799 - 财政年份:2019
- 资助金额:
$ 24.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhancement of handwritten mathematical expression recognition through establishment of multi-dimensional structural analysis
通过建立多维结构分析增强手写数学表达式识别
- 批准号:
19H01117 - 财政年份:2019
- 资助金额:
$ 24.26万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical problems in application of multi-dimensional multiwavelet analysis
多维多小波分析应用中的数学问题
- 批准号:
17K05298 - 财政年份:2017
- 资助金额:
$ 24.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of multi-scale mathematical models with inter-hierarchical feedback effects and their applications for disease
具有层次间反馈效应的多尺度数学模型分析及其在疾病中的应用
- 批准号:
16K05265 - 财政年份:2016
- 资助金额:
$ 24.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
WORKSHOP: Multi-scale and high-contrast PDE: from modelling, to mathematical analysis, to inversion
研讨会:多尺度和高对比度偏微分方程:从建模,到数学分析,到反演
- 批准号:
EP/I028668/1 - 财政年份:2011
- 资助金额:
$ 24.26万 - 项目类别:
Research Grant
Analysis of multi-scale problems in mathematical chemistry
数学化学中的多尺度问题分析
- 批准号:
EP/H05023X/1 - 财政年份:2010
- 资助金额:
$ 24.26万 - 项目类别:
Research Grant
Computational and mathematical methods for population genetics analysis of multi-locus data under selection and strong recombination
选择和强重组下多位点数据群体遗传学分析的计算和数学方法
- 批准号:
191584514 - 财政年份:2010
- 资助金额:
$ 24.26万 - 项目类别:
Research Fellowships
Mathematical Analysis for Reduction of Thermal Stress in Functionally Graded Materials and Multi-objective Optimization of Material Composition
功能梯度材料热应力降低的数学分析和材料成分的多目标优化
- 批准号:
10650067 - 财政年份:1998
- 资助金额:
$ 24.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)