ALOOF: Autonomous Learning of the Meaning of Objects

ALOOF:自主学习物体的含义

基本信息

  • 批准号:
    EP/M015777/1
  • 负责人:
  • 金额:
    $ 43.43万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

When working with and for humans, robots and autonomous systems must know about the objects involved in human activities, e.g. the parts and tools in manufacturing, the professional items used in service applications, and the objects of daily life in assisted living. While great progress has been made in object instance and class recognition, a robot is always limited to knowing about the objects it has been trained to recognize. The goal of ALOOF is to enable robots to exploit the vast amount of knowledge on the Web in order to learn about previously unseen objects and to use this knowledge when acting in the real world. We will develop techniques to allow robots to use the Web to not just learn the appearance of new objects, but also their properties including where they might be found in the robot's environment. To achieve our goal, we will provide a mechanism for translating between the representations robots use in their real-world experience and those found on the Web. Our proposed translation mechanism is a meta-modal representation (i.e. a representation which contains and structures representations from other modalities), composed of meta-modal entities and relations between them. A single entity represents a single object type, and is composed of modal features extracted from robot sensors or the Web. The combined features are linked to the semantic properties associated with each entity. The robot's collection of meta-modal entities is organized into a structured ontology, supporting formal reasoning. This representation is complemented with methods for detecting gaps in the knowledge of the robot (i.e. unknown objects and properties), and for planning how to fill these gaps. As the robot's main source of new knowledge will be the Web, we will also contribute techniques for extracting relevant knowledge from Web resources using novel machine reading and computer vision algorithms.By linking meta-modal representations with the perception and action capabilities of robots, we will achieve an innovative and powerful mix of Web-supported and physically-grounded life-long learning. Our scenario consists of an open-ended domestic setting where robots have to find objects. Our measure of progress will be how many knowledge gaps (i.e. situations where the robot has incomplete information about objects), can be resolved autonomously given specific prior knowledge. We will integrate the results on multiple mobile robots including the MetraLabs SCITOS robot, and the home service robot HOBBIT.
当与人类一起工作并为人类工作时,机器人和自主系统必须了解人类活动中涉及的对象,例如制造中的零件和工具、服务应用中使用的专业物品以及辅助生活中的日常生活物品。尽管在对象实例和类识别方面取得了巨大进步,但机器人始终仅限于了解它经过训练可识别的对象。 ALOOF 的目标是让机器人能够利用网络上的大量知识来了解以前未见过的物体,并在现实世界中行动时使用这些知识。我们将开发技术,让机器人不仅可以使用网络来学习新物体的外观,还可以了解它们的属性,包括它们可能在机器人环境中的位置。为了实现我们的目标,我们将提供一种机制,用于在机器人在现实世界体验中使用的表示与网络上找到的表示之间进行转换。我们提出的翻译机制是元模态表示(即包含并构造其他模态表示的表示),由元模态实体及其之间的关系组成。单个实体代表单个对象类型,由从机器人传感器或网络提取的模态特征组成。组合的特征链接到与每个实体关联的语义属性。机器人的元模态实体集合被组织成结构化本体,支持形式推理。这种表示方法得到了检测机器人知识差距(即未知物体和属性)以及规划如何填补这些差距的方法的补充。由于机器人新知识的主要来源将是网络,我们还将贡献使用新颖的机器阅读和计算机视觉算法从网络资源中提取相关知识的技术。通过将元模态表示与机器人的感知和动作能力联系起来,我们将实现网络支持和基于物理的终身学习的创新和强大的组合。我们的场景包括一个开放式的家庭环境,机器人必须在其中寻找物体。我们衡量进展的标准是,在给定特定先验知识的情况下,可以自主解决多少知识差距(即机器人对物体的信息不完整的情况)。我们将把结果整合到多个移动机器人上,包括 MetraLabs SCITOS 机器人和家庭服务机器人 HOBBIT。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Lifelong Object Learning by Integrating Situated Robot Perception and Semantic Web Mining
通过集成情境机器人感知和语义网挖掘实现终身对象学习
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Young J
  • 通讯作者:
    Young J
IEEE Robotics and Automated Letters
IEEE 机器人和自动化信件
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kunze L
  • 通讯作者:
    Kunze L
Semantic Web-Mining and Deep Vision for Lifelong Object Discovery
用于终身对象发现的语义网络挖掘和深度视觉
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Young J
  • 通讯作者:
    Young J
Autonomous Learning of Object Models on a Mobile Robot
移动机器人上对象模型的自主学习
Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work
从嘈杂的网络数据中学习深度视觉对象模型:如何使其发挥作用
  • DOI:
    10.48550/arxiv.1702.08513
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Massouh Nizar
  • 通讯作者:
    Massouh Nizar
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Parker其他文献

ATG Special Report--Part 2--Industry Consolidation in the Information Services and Library Environment: Perspectives from Thought Leaders
ATG 特别报告--第 2 部分--信息服务和图书馆环境中的行业整合:思想领袖的观点
  • DOI:
    10.7771/2380-176x.7462
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Strauch;T. Gilson;David Parker
  • 通讯作者:
    David Parker
Challenges for Effective Counterterrorism Communication: Practitioner Insights and Policy Implications for Preventing Radicalization, Disrupting Attack Planning, and Mitigating Terrorist Attacks
有效反恐沟通的挑战:从业者的见解和对防止激进化、破坏攻击计划和减轻恐怖袭击的政策影响
  • DOI:
    10.1080/1057610x.2017.1373427
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Parker;J. Pearce;Lasse Lindekilde;M. Rogers
  • 通讯作者:
    M. Rogers
Meniscal Transplant surgery or Optimised Rehabilitation full randomised trial (MeTeOR2): a study protocol
半月板移植手术或优化康复完全随机试验 (MeTeOR2):研究方案
  • DOI:
    10.1136/bmjopen-2024-085125
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Susanne Arnold;Timothy Spalding;H. Parsons;David J. Beard;Helen Bradley;Peter Crisford;D. Ellard;Manuela Ferreira;A. Getgood;J. Guck;Aminul Haque;Iftekhar Khan;James Mason;Bryony Milroy;P. Myers;David Parker;Andrew Price;Amy Smith;NA Smith;T. Smith;Kimberley Stewart;Martin Underwood;Peter Verdonk;Andrew J Metcalfe
  • 通讯作者:
    Andrew J Metcalfe
Examining emergency department utilization following bariatric surgery.
检查减肥手术后急诊室的利用率。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cullen Roe;Mark E. Mahan;Jason Stanton;Shengxuan Wang;Alexandra M. Falvo;Anthony Petrick;David Parker;R. Horsley
  • 通讯作者:
    R. Horsley
Religion versus Rubbish: Deprivation and Social Capital in Inner-City Birmingham
宗教与垃圾:伯明翰市中心的剥夺和社会资本
  • DOI:
    10.1177/0037768608097236
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Karner;David Parker
  • 通讯作者:
    David Parker

David Parker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Parker', 18)}}的其他基金

CODEX ZACYNTHIUS
扎辛修斯法典
  • 批准号:
    AH/R001251/1
  • 财政年份:
    2018
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
Triple Imaging with PARASHIFT Probes
使用 PARASHIFT 探头进行三重成像
  • 批准号:
    EP/P032036/1
  • 财政年份:
    2017
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
Lanthanide complexes as chiral probes and labels
作为手性探针和标记的镧系元素配合物
  • 批准号:
    EP/P025013/1
  • 财政年份:
    2017
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
Non-classical paramagnetic susceptibility and anisotropy in lanthanide coordination complexes: a combined experimental and theoretical study
镧系配位配合物的非经典顺磁化率和各向异性:实验与理论相结合的研究
  • 批准号:
    EP/N006909/1
  • 财政年份:
    2016
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
Moving the goal posts: PARASHIFT proton magnetic resonance imaging
移动球门柱:PARASHIFT 质子磁共振成像
  • 批准号:
    EP/L01212X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
MRI: Acquisition of a Gas Chromatograph/Mass Spectrometer-Flame Ionization Detector (GC/MS-FID) for Research in Environmental and Agricultural Sciences
MRI:购买气相色谱仪/质谱仪-火焰离子化检测器 (GC/MS-FID) 用于环境和农业科学研究
  • 批准号:
    1428096
  • 财政年份:
    2014
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Standard Grant
EuroTracker Dyes: Synthesis and Application in Functional Cell Imaging
EuroTracker 染料:合成及其在功能细胞成像中的应用
  • 批准号:
    EP/L019124/1
  • 财政年份:
    2014
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
Automated Game-Theoretic Verification of Security Systems
安全系统的自动博弈论验证
  • 批准号:
    EP/K038575/1
  • 财政年份:
    2013
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
The Development of a Commercial Boron Neutron Capture Therapy Facility: establishing a clinically useable facility at Birmingham University
商业硼中子捕获治疗设施的开发:在伯明翰大学建立临床可用的设施
  • 批准号:
    ST/I003169/1
  • 财政年份:
    2012
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
The development of circularly polarised luminescence microscopy and responsive CPL probes
圆偏振发光显微镜和响应性 CPL 探针的发展
  • 批准号:
    EP/I010319/1
  • 财政年份:
    2011
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
  • 批准号:
    2339774
  • 财政年份:
    2024
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Continuing Grant
Learning Coordination for Multi-Autonomous Multi-Human (MAMH) Agent Systems with Guaranteed Safety
具有安全保证的多自主多人(MAMH)代理系统的学习协调
  • 批准号:
    2332210
  • 财政年份:
    2024
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Standard Grant
Cross-Layer Uncertainty-Aware Reinforcement Learning for Safe Autonomous Driving
用于安全自动驾驶的跨层不确定性感知强化学习
  • 批准号:
    EP/Y002644/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
CPS: Small: NSF-DST: Safety-Aware Behaviour-Driven Reinforcement Learning Based Autonomous Driving Solution for Urban Areas
CPS:小型:NSF-DST:基于安全意识行为驱动的强化学习的城市自动驾驶解决方案
  • 批准号:
    2343167
  • 财政年份:
    2024
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312835
  • 财政年份:
    2023
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Standard Grant
An autonomous machine learning-based molecular dynamics method that utilizes first-principles atomic energy calculation
一种基于自主机器学习的分子动力学方法,利用第一原理原子能计算
  • 批准号:
    23H03415
  • 财政年份:
    2023
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Autonomous Learning and Development in Embodied Neuromorphic Systems (ALDENS)
具身神经形态系统的自主学习和发展(ALDENS)
  • 批准号:
    EP/X018733/1
  • 财政年份:
    2023
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Research Grant
Machine learning for social coordination of autonomous vehicles with human road users
机器学习用于自动驾驶车辆与人类道路使用者的社会协调
  • 批准号:
    2887445
  • 财政年份:
    2023
  • 资助金额:
    $ 43.43万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了