Workshop: Homotopical algebra and geometry

研讨会:同伦代数和几何

基本信息

  • 批准号:
    EP/M017001/1
  • 负责人:
  • 金额:
    $ 0.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The proposal is for funding a week-long workshop `Homotopical algebra and geometry'. It will be held on April 6-10, 2015. Homotopical algebra was created in the 1960's in seminal works of Quillen, Grothendieck-Verdier and Dold-Puppe. Since then it has found innumerable applications in various fields of Pure Mathematics, most notably in algebraic topology and algebraic geometry. In the last couple of decades the influence of homotopical algebra extended to representation theory, differential geometry and aspects of theoretical physics; its role and importance has been steadily increasing. The workshop aims to bring together a group of international experts using homotopical algebra in their research, foster new collaboration and contribute to developing the new generation of UK mathematicians. The workshop will be held on Monday, Wednesday, Thursday and Friday. Morning plenary lectures will be delivered by top contemporary mathematicians from the UK and overseas. The afternoon sessions will consist of invited and contributed talks.An important aspect of the workshop is the Northern Regional LMS meeting embedded into it. The LMS meeting will be commemorating the 150th anniversary of the London Mathematical Society and the talks will reflect this theme. Part of the funding for the workshop and the meeting comes from the LMS.The meeting will be held on Tuesday afternoon. There will be three talks: one of the historical nature and the other two given by prominent mathematicians who helped shape our modern understanding of homotopical algebra and related fields.Furthermore, it is planned to conduct a Wikipedia Editathon, a training event for prospective Wikipedia editors. Given the profound role played by Wikipedia in our world, this event will have an immediate and lasting impact on the UK and worldwide academic community and the society in general.
这项建议是为为期一周的“同伦代数和几何”讲习班提供资金。将于2015年4月6日至10日举行。同伦代数是在20世纪60年代由Quillen,Grothendieck-Verdier和Dold-Puppe的开创性著作中创立的。从那时起,它已经发现无数的应用在各个领域的纯数学,最显着的是在代数拓扑和代数几何。在过去的几十年里,同伦代数的影响扩展到表示论、微分几何和理论物理的各个方面;它的作用和重要性一直在稳步增加。该研讨会旨在汇集一批在研究中使用同伦代数的国际专家,促进新的合作,并为培养新一代英国数学家做出贡献。讲习班将于星期一、星期三、星期四和星期五举行。上午全体讲座将由来自英国和海外的当代顶尖数学家发表。下午的会议将包括邀请和贡献的会谈。研讨会的一个重要方面是北方地区LMS会议嵌入到它。LMS会议将纪念伦敦数学学会150周年,会谈将反映这一主题。研讨会和会议的部分资金来自LMS。会议将于周二下午举行。将有三个会谈:其中一个是历史性的,另外两个是著名的数学家给出的,他们帮助我们形成了对同伦代数和相关领域的现代理解。此外,还计划举办一次维基百科编辑会,为未来的维基百科编辑提供培训。鉴于维基百科在我们的世界中发挥的深远作用,这一事件将对英国和全球学术界以及整个社会产生直接和持久的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrey Lazarev其他文献

Homotopy relative Rota-Baxter Lie algebras, triangular L∞-bialgebras and higher derived brackets

Andrey Lazarev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrey Lazarev', 18)}}的其他基金

Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
  • 批准号:
    EP/T029455/1
  • 财政年份:
    2020
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Research Grant
Derived localisation in algebra and homotopy theory
代数和同伦理论中的导出局域化
  • 批准号:
    EP/N015452/1
  • 财政年份:
    2016
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Research Grant
Homological algebra of Feynman graphs
费曼图的同调代数
  • 批准号:
    EP/J008451/1
  • 财政年份:
    2012
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Research Grant
Maurer-Cartan moduli and homotopy theory
Maurer-Cartan 模量和同伦理论
  • 批准号:
    EP/I014012/1
  • 财政年份:
    2011
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Research Grant
Modular operads and topological field theories
模运算和拓扑场论
  • 批准号:
    EP/F031513/1
  • 财政年份:
    2008
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Research Grant

相似海外基金

Homotopical methods and cohomological supports in local algebra
局部代数中的同伦方法和上同调支持
  • 批准号:
    2302567
  • 财政年份:
    2023
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Standard Grant
Homological and Homotopical Algebra
同调和同伦代数
  • 批准号:
    1817931
  • 财政年份:
    2016
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Studentship
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
  • 批准号:
    1503044
  • 财政年份:
    2014
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Continuing Grant
HOMOTOPICAL ALGEBRA: COALGEBRAS, DGAS, AND RATIONAL EQUIVARIANT SPECTRA
同伦代数:余代数、DGAS 和有理等变谱
  • 批准号:
    1406468
  • 财政年份:
    2014
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
  • 批准号:
    1201889
  • 财政年份:
    2012
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Continuing Grant
Representation theory and homotopical algebra
表示论和同伦代数
  • 批准号:
    1161999
  • 财政年份:
    2012
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Continuing Grant
The Legacy of Daniel Quillen: K-Theory And Homotopical Algebra
Daniel Quillen 的遗产:K 理论和同伦代数
  • 批准号:
    1206449
  • 财政年份:
    2012
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Standard Grant
ALGEBRAIC MODELS OF HOMOTOPY THEORIES AND HOMOTOPICAL MODELS OF ALGEBRA
同伦理论的代数模型和代数的同伦模型
  • 批准号:
    1104396
  • 财政年份:
    2011
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Standard Grant
Complex analysis, complex geometry, and homotopical algebra
复分析、复几何和同伦代数
  • 批准号:
    183653-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Discovery Grants Program - Individual
Complex analysis, complex geometry, and homotopical algebra
复分析、复几何和同伦代数
  • 批准号:
    183653-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 0.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了