Modular operads and topological field theories
模运算和拓扑场论
基本信息
- 批准号:EP/F031513/1
- 负责人:
- 金额:$ 35.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2008
- 资助国家:英国
- 起止时间:2008 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a research in pure mathematics which is at the junction of several mathematical disciplines and theoretical physics. It concerns certain aspects of topology and algebraic geometry which uses methods of other areas of mathematics and mathematical physics such as representation theory, quantum field theory and combinatorics.Feynman graphs originally appeared in the work of theoretical physicists studying path integrals appearing in perturbative quantum field theory. During the last 10-15 years, due to efforts of such people as Kontsevich and Witten it became clear thatFeynman diagrams could be used to great effect to solve problems in pure mathematics.The notion central to the proposed research is that of a modular operad, whose underlying structure is governed by the combinatorics of Feynman graphs. This notion of an operad originally appeared in algebraic topology but recently found important applications in mathematical physics. An algebra over a modular operad is an abstraction of the notion of an associative algebra with a compatible inner product; such algebras appear naturally in various physical theories. Understanding these structures will likely shed new light on the intersection theory on the moduli spaces of curves, one of the most important and deep problems of modern algebraic geometry. This project will be carried out at the University of Leicester. It requires assistance of a post-doctoral fellow and experts from other universities in the UK and abroad.
这是一项纯数学的研究,它处于几个数学学科和理论物理的交界处。它涉及拓扑学和代数几何的某些方面,它使用了其他数学和数学物理领域的方法,如表示论、量子场论和组合学。费曼图最初出现在理论物理学家研究微扰量子场论中出现的路径积分的工作中。在过去的10-15年里,由于康采维奇和威腾等人的努力,费曼图可以很好地用于解决纯数学中的问题。所提出的研究的核心概念是模运算符,其基本结构由费曼图的组合学决定。这个算符的概念最初出现在代数拓扑学中,但最近在数学物理中得到了重要的应用。模运算符上的代数是具有相容内积的结合代数概念的抽象;这样的代数自然出现在各种物理理论中。了解这些结构可能会为曲线的模空间的交集理论带来新的曙光,这是现代代数几何中最重要和最深刻的问题之一。该项目将在莱斯特大学进行。它需要博士后研究员和来自英国和国外其他大学的专家的协助。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cohomology theories for homotopy algebras and noncommutative geometry
同伦代数和非交换几何的上同调理论
- DOI:10.2140/agt.2009.9.1503
- 发表时间:2009
- 期刊:
- 影响因子:0.7
- 作者:Hamilton A
- 通讯作者:Hamilton A
Feynman diagrams and minimal models for operadic algebras
费曼图和歌剧代数的最小模型
- DOI:10.1112/jlms/jdp073
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Chuang J
- 通讯作者:Chuang J
L-infinity maps and twistings
L-无穷大映射和扭曲
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Chuang J, Lazarev A
- 通讯作者:Chuang J, Lazarev A
Abstract Hodge Decomposition and Minimal Models for Cyclic Algebras
循环代数的抽象Hodge分解和最小模型
- DOI:10.1007/s11005-009-0314-7
- 发表时间:2009
- 期刊:
- 影响因子:1.2
- 作者:Chuang J
- 通讯作者:Chuang J
Curved infinity-algebras and their characteristic classes
弯曲无穷代数及其特征类
- DOI:10.1112/jtopol/jts011
- 发表时间:2012
- 期刊:
- 影响因子:1.1
- 作者:Lazarev A
- 通讯作者:Lazarev A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrey Lazarev其他文献
Homotopy relative Rota-Baxter Lie algebras, triangular L∞-bialgebras and higher derived brackets
- DOI:
https://doi.org/10.1090/tran/8844 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Andrey Lazarev;Yunhe Sheng;Rong Tang - 通讯作者:
Rong Tang
Andrey Lazarev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrey Lazarev', 18)}}的其他基金
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T029455/1 - 财政年份:2020
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Derived localisation in algebra and homotopy theory
代数和同伦理论中的导出局域化
- 批准号:
EP/N015452/1 - 财政年份:2016
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Workshop: Homotopical algebra and geometry
研讨会:同伦代数和几何
- 批准号:
EP/M017001/1 - 财政年份:2015
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Homological algebra of Feynman graphs
费曼图的同调代数
- 批准号:
EP/J008451/1 - 财政年份:2012
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Maurer-Cartan moduli and homotopy theory
Maurer-Cartan 模量和同伦理论
- 批准号:
EP/I014012/1 - 财政年份:2011
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
相似海外基金
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
- 批准号:
EP/V002325/2 - 财政年份:2022
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Algebraic operads
代数运算
- 批准号:
RGPIN-2016-03725 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Discovery Grants Program - Individual
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
- 批准号:
EP/V002325/1 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
- 批准号:
EP/V002309/1 - 财政年份:2021
- 资助金额:
$ 35.38万 - 项目类别:
Research Grant
Algebraic operads
代数运算
- 批准号:
RGPIN-2016-03725 - 财政年份:2020
- 资助金额:
$ 35.38万 - 项目类别:
Discovery Grants Program - Individual
Relating Fukaya Categories Using Combinatorics, Operads, and Nonlinear Elliptic Partial Differential Equations
使用组合学、运算和非线性椭圆偏微分方程关联 Fukaya 类别
- 批准号:
2002137 - 财政年份:2019
- 资助金额:
$ 35.38万 - 项目类别:
Standard Grant
Relating Fukaya Categories Using Combinatorics, Operads, and Nonlinear Elliptic Partial Differential Equations
使用组合学、运算和非线性椭圆偏微分方程关联 Fukaya 类别
- 批准号:
1906220 - 财政年份:2019
- 资助金额:
$ 35.38万 - 项目类别:
Standard Grant
Algebraic operads
代数运算
- 批准号:
RGPIN-2016-03725 - 财政年份:2019
- 资助金额:
$ 35.38万 - 项目类别:
Discovery Grants Program - Individual
Algebraic operads
代数运算
- 批准号:
RGPIN-2016-03725 - 财政年份:2018
- 资助金额:
$ 35.38万 - 项目类别:
Discovery Grants Program - Individual