Homological algebra of Feynman graphs
费曼图的同调代数
基本信息
- 批准号:EP/J008451/1
- 负责人:
- 金额:$ 26.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The area of the proposed research is at the junction of several branches of pure mathematics and mathematical physics. It follows the pattern of applying the physical intuition and ideas to solving mathematical problems which has been a characteristic feature of many groundbreaking developments in algebra in geometry in the last two decades.The project has two closely related themes. One purports to link two deep algebraic constructions which have been extensively studied in their own right. The first is the calculation of the Chevalley-Eilenberg cohomology of infinite matrices with values in an algebra and the second is the calculation of the Chevalley-Eilenberg cohomology of the infinite-dimensional algebra of noncommutative hamiltonians. One conjectural application is the construction of an algebraic version of chain level Gromov-Witten invariants.The second theme derives its motivation from the general problem of quantizing field theories defined classically, i.e. in terms of an action functional. More precisely, a classical field theory is modelled as a certain algebraic structure, called L-infinity algebra which is determined by a certain polynomial or power series function, and one studies other algebraic structures derived by integrating this function. The application will include topological theories of Chern-Simons type and Poisson sigma-models.
建议的研究领域是在纯数学和数学物理的几个分支的交界处。它遵循应用物理直觉和思想来解决数学问题的模式,这是过去二十年来代数几何中许多突破性发展的特征。一个旨在连接两个深代数结构已被广泛研究自己的权利。第一个是计算的Chevalley-Eilenberg上同调的无限矩阵的值在一个代数和第二个是计算的Chevalley-Eilenberg上同调的无限维代数的非交换汉密尔顿。第二个主题的动机来自于经典定义的量子化场论的一般问题,即用作用泛函来定义场论。更确切地说,经典场论被建模为某种代数结构,称为L-无穷代数,由某种多项式或幂级数函数确定,并研究通过积分此函数导出的其他代数结构。应用将包括陈-西蒙斯型和泊松σ模型的拓扑理论。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unimodular homotopy algebras and Chern-Simons theory
幺模同伦代数和 Chern-Simons 理论
- DOI:10.1016/j.jpaa.2015.05.017
- 发表时间:2015
- 期刊:
- 影响因子:0.8
- 作者:Braun C
- 通讯作者:Braun C
Maurer-Cartan moduli and models for function spaces
功能空间的 Maurer-Cartan 模数和模型
- DOI:10.1016/j.aim.2012.11.009
- 发表时间:2013
- 期刊:
- 影响因子:1.7
- 作者:Lazarev A
- 通讯作者:Lazarev A
Cocommutative coalgebras: homotopy theory and Koszul duality
共交换余代数:同伦理论和 Koszul 对偶性
- DOI:10.4310/hha.2016.v18.n2.a17
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Chuang J
- 通讯作者:Chuang J
Maurer-Cartan moduli and theorems of Riemann-Hilbert type
Maurer-Cartan 模量和 Riemann-Hilbert 型定理
- DOI:10.48550/arxiv.1802.02549
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Chuang Joseph
- 通讯作者:Chuang Joseph
Homotopy BV algebras in Poisson geometry
泊松几何中的同伦 BV 代数
- DOI:10.1090/s0077-1554-2014-00216-8
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Braun C
- 通讯作者:Braun C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrey Lazarev其他文献
Homotopy relative Rota-Baxter Lie algebras, triangular L∞-bialgebras and higher derived brackets
- DOI:
https://doi.org/10.1090/tran/8844 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Andrey Lazarev;Yunhe Sheng;Rong Tang - 通讯作者:
Rong Tang
Andrey Lazarev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrey Lazarev', 18)}}的其他基金
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T029455/1 - 财政年份:2020
- 资助金额:
$ 26.7万 - 项目类别:
Research Grant
Derived localisation in algebra and homotopy theory
代数和同伦理论中的导出局域化
- 批准号:
EP/N015452/1 - 财政年份:2016
- 资助金额:
$ 26.7万 - 项目类别:
Research Grant
Workshop: Homotopical algebra and geometry
研讨会:同伦代数和几何
- 批准号:
EP/M017001/1 - 财政年份:2015
- 资助金额:
$ 26.7万 - 项目类别:
Research Grant
Maurer-Cartan moduli and homotopy theory
Maurer-Cartan 模量和同伦理论
- 批准号:
EP/I014012/1 - 财政年份:2011
- 资助金额:
$ 26.7万 - 项目类别:
Research Grant
Modular operads and topological field theories
模运算和拓扑场论
- 批准号:
EP/F031513/1 - 财政年份:2008
- 资助金额:
$ 26.7万 - 项目类别:
Research Grant
相似国自然基金
李代数的权表示
- 批准号:10371120
- 批准年份:2003
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
- 批准号:
2337178 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 26.7万 - 项目类别:
Standard Grant