Mathematical models and algorithms for allocating scarce airport resources (OR-MASTER)
分配稀缺机场资源的数学模型和算法(OR-MASTER)
基本信息
- 批准号:EP/M020258/1
- 负责人:
- 金额:$ 288.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Congestion at major airports in the UK and across Europe and the rest of the world is a serious and growing problem. Already Heathrow faces problems occasioned by serious congestion for a major part of the day while at Gatwick demand is expected to exceed capacity for 17 hours per day by 2025. According to a Eurocontrol study, planned capacity at the 138 Eurocontrol Statistical Reference Area (ESRA) airports is expected to increase by 41% in total by 2030, with demand exceeding airport capacity by as much as 2.3 million flights (or 11%) in the most-likely forecast growth scenario. The development and deployment of airport capacity is a major societal issue engendering intense public debate in the UK and around the world.Capacity at congested airports is expressed in slots. A slot identifies a time interval on a specific date during which a carrier is permitted to use the airport infrastructure for landing or take-off. Current slot allocation procedures suffer (inter alia) from the following limitations:1)Simplistic modelling of the objectives and operational/regulatory constraints bearing on the multiple stakeholders involved in (and affected by) the slot allocation process.2)Insufficient capture of the interactions encountered in airport networks.3)The use of empirical or ad hoc processes for determining (rather than computing) declared capacity which address neither the uncertainties involved in airport capacity assessment nor the complexity and size of the real-world problem, even at the single-airport level.Consequently, existing approaches to the allocation of airport capacity fail in a number of critical ways to reflect the complexities presented by the real world. This creates allocation inefficiencies which, in turn, result in poor airport capacity utilisation with significant negative impacts on airport revenues, airline operating costs, the level of service offered to passengers and the environment.There is thus a pressing need to meet the major scientific challenge of developing novel mathematical models and solution approaches to transform the airport slot allocation process and its associated outcomes. The programme grant aims to do just that for a single airport and for a network of airports. Mathematical models will be developed and analysed which consider the objectives and requirements of all stakeholders and which take account of a wide range of operational and regulatory constraints. The intrinsic complexity of the proposed programme and its large scale (especially for the case of the network-wide slot allocation) will mean that it will provide an excellent test-bed for the development of new heuristics and hyper heuristics for large scale complex scheduling problems more widely. Algorithms that will be developed and tested by this project will provide essential support for the complex large scale capacity allocation problems that arise in other types of transportation networks, including rail networks. In addition, it could extend to other types of networks that share similar problem structures, such as those in energy and telecommunications.The models and solution techniques developed will underpin the development of novel decision support systems which have the potential to make a major impact on airport operations. The research team has an internationally leading profile in the areas of mathematical modelling, heuristic development, stochastic optimization, airport slot allocation, airport management and performance assessment. It has an excellent track record of research cooperation with all categories of stakeholders. It will cooperate closely with an impressive array of leading industry stakeholders in order to make sure that the work is as cutting edge industrially as it is scientifically.
英国、欧洲和世界其他地区主要机场的拥堵是一个严重且日益严重的问题。希思罗机场已经面临着一天中大部分时间严重拥堵的问题,而盖特威克机场的需求预计到2025年将超过每天17个小时的容量。根据Eurocontrol的一项研究,到2030年,138个Eurocontrol统计参考区(ESRA)机场的计划容量预计将增加41%,在最有可能的预测增长情景中,需求超过机场容量多达230万个航班(或11%)。机场容量的开发和部署是一个重大的社会问题,在英国和世界各地引起了激烈的公众辩论。拥挤机场的容量以时隙表示。时隙标识了特定日期的一段时间间隔,在此期间,承运人被允许使用机场基础设施降落或起飞。目前的时隙分配程序(阿利亚其他外)不受以下限制:(1)对涉及多个利益攸关方的目标和业务/监管制约因素进行简单建模,2)对机场网络中遇到的相互作用的捕获不足。3)使用经验或特设过程来确定(而不是计算)申报容量,这既没有解决机场容量评估中涉及的不确定性,也没有解决实际问题的复杂性和规模,即使是在单个机场的水平上。因此,现有的分配机场容量的方法在许多关键方面不能反映真实的世界所呈现的复杂性。这造成了分配效率低下,这反过来又导致机场容量利用率低下,对机场收入、航空公司运营成本、为乘客提供的服务水平和环境产生重大负面影响。因此,迫切需要迎接重大科学挑战,开发新的数学模型和解决方案,以改变机场时隙分配过程及其相关结果。该计划的赠款旨在为一个机场和一个机场网络提供资金。将开发和分析数学模型,这些模型考虑到所有利益攸关方的目标和要求,并考虑到广泛的业务和监管限制。所提出的方案的内在复杂性和它的大规模(特别是对于网络范围的时隙分配的情况下)将意味着它将提供一个很好的测试平台,为开发新的算法和超算法的大规模复杂调度问题更广泛。该项目将开发和测试的算法将为其他类型的交通网络(包括铁路网络)中出现的复杂的大规模容量分配问题提供必要的支持。此外,它还可以扩展到具有类似问题结构的其他类型的网络,例如能源和电信领域的网络。开发的模型和解决方案技术将支持新型决策支持系统的开发,这些系统有可能对机场运营产生重大影响。该研究团队在数学建模、启发式开发、随机优化、机场时隙分配、机场管理和性能评估等领域具有国际领先地位。它在与各类利益攸关方的研究合作方面有着良好的记录。它将与一系列令人印象深刻的领先行业利益相关者密切合作,以确保这项工作在工业上和科学上都是最前沿的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling and Solving the Single-Airport Slot Allocation Problem
建模并解决单机场航班时刻分配问题
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fotios A. Katsigiannis
- 通讯作者:Fotios A. Katsigiannis
Calculating block time and consumed fuel for an aircraft model
计算飞机模型的阻塞时间和消耗的燃料
- DOI:10.1017/aer.2020.137
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:De Lemos F
- 通讯作者:De Lemos F
Introducing flexibility and demand-based fairness in slot scheduling decisions
在时段调度决策中引入灵活性和基于需求的公平性
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Fairbrother J
- 通讯作者:Fairbrother J
Optimal scheduling of slots with season segmentation
- DOI:10.1016/j.ejor.2020.10.003
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Jamie Fairbrother;K. Zografos
- 通讯作者:Jamie Fairbrother;K. Zografos
A Slot-Scheduling Mechanism at Congested Airports that Incorporates Efficiency, Fairness, and Airline Preferences
- DOI:10.1287/trsc.2019.0926
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Jamie Fairbrother;K. Zografos;K. Glazebrook
- 通讯作者:Jamie Fairbrother;K. Zografos;K. Glazebrook
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantinos Zografos其他文献
An information theoretic argument for the validity of the exponential model
- DOI:
10.1007/bf01895310 - 发表时间:
1994-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Konstantinos Zografos;Kosmas Ferentinos - 通讯作者:
Kosmas Ferentinos
Multivariate Linear Regression Model with Elliptically Contoured Distributed Errors and Monotone Missing Dependent Variables
具有椭圆形分布误差和单调缺失因变量的多元线性回归模型
- DOI:
10.1080/03610920701653102 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
A. Batsidis;Konstantinos Zografos - 通讯作者:
Konstantinos Zografos
Konstantinos Zografos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantinos Zografos', 18)}}的其他基金
RESilient Emergency Preparedness for Natural Disaster Response through Operational Research(RESPOND-OR)
通过运筹学进行自然灾害响应的弹性应急准备(RESPOND-OR)
- 批准号:
EP/T003979/1 - 财政年份:2019
- 资助金额:
$ 288.28万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical Modeling and Scientific Computing for Infectious Disease Research
传染病研究的数学建模和科学计算
- 批准号:
10793008 - 财政年份:2023
- 资助金额:
$ 288.28万 - 项目类别:
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 288.28万 - 项目类别:
Mathematical models and algorithms to support the evolution of operational practices
支持操作实践演变的数学模型和算法
- 批准号:
RGPIN-2021-03327 - 财政年份:2022
- 资助金额:
$ 288.28万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Advancing Mathematical Models and Algorithms for Decentralized Optimization in Complex Multi-agent Networks
职业:推进复杂多智能体网络中分散优化的数学模型和算法
- 批准号:
2323159 - 财政年份:2022
- 资助金额:
$ 288.28万 - 项目类别:
Standard Grant
Mathematical models and algorithms to support the evolution of operational practices
支持操作实践演变的数学模型和算法
- 批准号:
DGECR-2021-00253 - 财政年份:2021
- 资助金额:
$ 288.28万 - 项目类别:
Discovery Launch Supplement
Mathematical models and algorithms to support the evolution of operational practices
支持操作实践演变的数学模型和算法
- 批准号:
RGPIN-2021-03327 - 财政年份:2021
- 资助金额:
$ 288.28万 - 项目类别:
Discovery Grants Program - Individual
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
- 批准号:
21K12034 - 财政年份:2021
- 资助金额:
$ 288.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining bone ecosystem effects on metastatic prostate cancer evolution and treatment response using an integrated mathematical modeling approach
使用综合数学建模方法定义骨生态系统对转移性前列腺癌演变和治疗反应的影响
- 批准号:
10403652 - 财政年份:2020
- 资助金额:
$ 288.28万 - 项目类别:
Project 2: Mathematical modeling of factors that influence children's respiratory health
项目2:影响儿童呼吸健康因素的数学模型
- 批准号:
10362585 - 财政年份:2020
- 资助金额:
$ 288.28万 - 项目类别:
Mathematical Modeling of Influenza Severity in Outbred Mice
远交小鼠流感严重程度的数学模型
- 批准号:
10308106 - 财政年份:2020
- 资助金额:
$ 288.28万 - 项目类别: