The Lie algebra of derivations of a block of a finite group

有限群块导数的李代数

基本信息

  • 批准号:
    EP/X035328/1
  • 负责人:
  • 金额:
    $ 45.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Lie groups and Lie algebras arise in Physics as symmetry groups of physical systems and their tangent spaces, which may be regarded asinfinitesimal symmetry motions.These notions have long been of interest in many areas of Mathematics.Lie algebras arise, for instance, as operators on algebras respectingLeibniz' product rule, called derivations. The derivations on an algebra can be interpreted as representatives ofthe first Hochschild cohomology of an algebra. The Lie algebra structureon this space extends to a graded Lie algebra structure on Hochschildcohomology - this goes back to pioneering work of Gerstenhaber, in thecontext of the deformation theory of algebras.The use of this technology in Physics tends to be over fields ofcharacteristic zero, but the underlying concepts have analogues over fields of prime characteristic, and makes this technology available for investigations in the modular representation theory of finite group algebras over local rings and fields. In fact, there are `many more' finite-dimensional Lie algebras over fields of prime characteristic thanover the complex numbers.A particular feature of modular representation theory of finite groupsis that it is driven by a great number of conjectures, some of which predict remarkable structural connection between various direct factors of finite group algebras, and other simply predicting mysterious numerical coincidences.Hochschild cohomology in general has turned out to be useful forreformulations and variations of those conjectures. Expectations arehigh that investigating the (graded and restricted) Lie algebra structure of Hochschild cohomology in the context of finite group algebras and their direct factors should contribute to an understanding of some parts of those conjectures. The present proposal takes precisely these expectations as a startingpoint, putting the focus on higher structural aspects ofHochschild cohomology and their impact on invariants of finite group algebras and their blocks. We set out describing this programme in a sequence of nine conjectures, ranging from basic questions - such as the non-vanishing of the first Hochschild cohomology of blocks - viaexplicit calculations in certain classes of finite groups to currently elusive conjectures on numerical and structural aspects offinite groups and their blocks.
李群和李代数出现在物理学中,作为物理系统及其切空间的对称群,可以将其视为无穷小对称运动。这些概念长期以来一直在数学的许多领域引起人们的兴趣。例如,李代数出现为遵循莱布尼茨乘积规则的代数上的运算符,称为导子。代数上的导子可以解释为代数的第一Hochschild上同调的代表。这个空间上的李代数结构扩展到Hochschild上同调的分次李代数结构-这可以追溯到Gerstenhaber在代数变形理论的背景下的开创性工作。在物理学中使用这种技术往往是在特征为零的领域上,但基本概念在素特征的领域上有类似之处,并使这种技术可用于局部环和域上有限群代数的模表示理论的研究。事实上,素特征域上的有限维李代数比复数域上的有限维李代数要“多得多”。有限群的模表示理论的一个特点是它是由大量的定理驱动的,其中一些定理预言了有限群代数的各种直接因子之间的显著结构联系,和其他简单地预测神秘的数字巧合。Hochschild上同调一般已被证明是有用的forreformations和变化的那些结构。期望很高,调查(分次和限制)李代数结构的Hochschild上同调的有限群代数及其直接因素的背景下,应有助于理解这些结构的某些部分。本提案正是以这些期望为出发点,把重点放在更高的结构方面ofHochschild上同调及其对有限群代数及其块的不变量的影响。我们开始描述这一计划在一个序列的九个aptures,范围从基本的问题-如非零的第一Hochschild上同调块-通过明确的计算在某些类的有限群目前难以捉摸的aptures的数值和结构方面ofinite集团和他们的块。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Markus Linckelmann其他文献

On blocks of strongly p-solvable groups
  • DOI:
    10.1007/s00013-006-1826-3
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Radha Kessar;Markus Linckelmann
  • 通讯作者:
    Markus Linckelmann
Variations sur les blocs a groupes de defaut cycliques
默认循环集团的变体
  • DOI:
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Markus Linckelmann
  • 通讯作者:
    Markus Linckelmann
The operad of Latin hypercubes
拉丁超立方运算
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Markus Linckelmann
  • 通讯作者:
    Markus Linckelmann
A block theoretic proof of Thompson’s $$A\times B$$ -lemma
  • DOI:
    10.1007/s00013-021-01638-5
  • 发表时间:
    2021-08-23
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Radha Kessar;Markus Linckelmann
  • 通讯作者:
    Markus Linckelmann
A version of Alperinʼs weight conjecture for finite category algebras
  • DOI:
    10.1016/j.jalgebra.2013.02.010
  • 发表时间:
    2014-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Markus Linckelmann
  • 通讯作者:
    Markus Linckelmann

Markus Linckelmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Markus Linckelmann', 18)}}的其他基金

Integrable derivations and Hochschild cohomology of block algebras of finite groups
有限群块代数的可积导数和Hochschild上同调
  • 批准号:
    EP/M02525X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Research Grant
Representations and cohomology of algebras and categories
代数和范畴的表示和上同调
  • 批准号:
    0400951
  • 财政年份:
    2004
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 45.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了