W*-bundle techniques and the structure of simple C*-algebras

W*-丛技术和简单 C*-代数的结构

基本信息

  • 批准号:
    EP/N002377/1
  • 负责人:
  • 金额:
    $ 0.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

C*-algebras are mathematical objects that arose from the rigourisation of quantum mechanics. Each C*-algebra is a set of continuous linear maps from a Hilbert space to itself, closed under a few natural algebraic and analytic operations. Upon their inception, it was quickly realised that C*-algebras can be created in canonical ways from many other mathematical objects, modelling such things as symmetries, time-evolving systems, and large data sets. Time and again, interesting relationships have manifested between properties of the object being input and those of the resulting C*-algebra.For some time, it has been quite clear that different constructions can produce the same C*-algebra; this is interesting externally, where it may imply a profound relationship between the differing input data, and internally, where it allows single C*-algebras to be studied using the different techniques available from each different way of constructing it. However, a thorough elucidation of what conditions on the input objects produce different C*-algebra outputs has yet to be achieved. Achieving this goal amounts to classifying C*-algebras: showing that suitable, computable invariants (primarily, K-theory) are sufficiently sensitive to always distinguish different C*-algebras.It has recently become apparent that to classify C*-algebras, one should study regularity properties of the C*-algebras - certain properties of C*-algebras that indicate they are less complex and more tractable. Regular C*-algebras are ones that have low (topological) dimension - in a way that exactly generalises dimension of a space. Just as low dimensional spaces are easier to visualise, it is often easier to prove things about them, to the extent that certain things that are true of all low-dimensional spaces are no longer true in higher dimensions. This carries forward to C*-algebras: more and better things can be proven about low dimensional C*-algebras than high dimensional ones. Returning to classification, it has been shown in many cases that C*-algebras whose invariants take the same value are automatically the same (or isomorphic), provided that the C*-algebras have low dimension.I have been involved in research concerning regularity, and have found that a certain recent tool called W*-bundles shows tremendous promise, although its fundamental theory has yet to be developed. From a C*-algebra, one produces a W*-bundle, and uses this as a tool.This works because:(i) the W*-bundle has more structure, and it seems that it should be easier to prove things about it than about the C*-algebra;(ii) the W*-bundle has a very special relationship to the C*-algebra - it contains it in a special way - so that facts about the W*-bundle can have important implications for the C*-algebra.The aim of this project is to further our understanding of structure and classification of C*-algebras, by developing the theory of W*-bundles.
C*-代数是从量子力学的严格化中产生的数学对象。每个C*-代数是一组从希尔伯特空间到自身的连续线性映射,在一些自然代数和解析运算下闭合。在它们诞生之初,人们很快意识到C*-代数可以从许多其他数学对象中以规范的方式创建,建模诸如对称性,时间演化系统和大型数据集等。一次又一次地,被输入对象的性质和所得到的C*-代数的性质之间的有趣关系被证明,一段时间以来,人们已经很清楚,不同的构造可以产生相同的C*-代数;这在外部是令人感兴趣的,其中它可能意味着不同输入数据之间的深刻关系,而在内部,它允许使用每种不同的构造方法中可用的不同技术来研究单个C*-代数。然而,尚未彻底阐明输入对象的哪些条件会产生不同的C*-代数输出。实现这一目标相当于对C*-代数进行分类:证明合适的、可计算的不变量(主要是K-理论)足够敏感,总是能区分不同的C*-代数。最近变得明显的是,要对C*-代数进行分类,人们应该研究C*-代数的正则性--C*-代数的某些性质表明它们不那么复杂,更容易处理。正则C*-代数是具有低(拓扑)维数的代数-以一种精确地推广空间维数的方式。正如低维空间更容易形象化一样,证明它们的东西也更容易,以至于某些对所有低维空间都成立的东西在高维空间中不再成立。这一点可以推广到C*-代数:低维C*-代数比高维C*-代数有更多更好的证明。回到分类问题,在许多情况下,只要C *-代数具有低维,其不变量取相同值的C*-代数就自动地相同(或同构)。我一直参与有关正则性的研究,并发现最近的一种称为W*-丛的工具显示出巨大的前景,尽管它的基本理论还有待发展。从一个C*-代数中,我们产生了一个W*-丛,并将其作为一个工具,这是可行的,因为:(i)W*-丛有更多的结构,而且似乎证明它比证明C*-代数更容易;(ii)W*-丛与C*-代数有一种非常特殊的关系--它以一种特殊的方式包含它--所以关于W*-丛的事实可以对C*-代数有重要的影响。本项目的目的是通过发展W*-丛的理论来加深我们对C*-代数的结构和分类的理解。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quasidiagonality of nuclear C*-algebras
核 C* 代数的拟对角性
  • DOI:
    10.4007/annals.2017.185.1.4
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Tikuisis;S. White;W. Winter
  • 通讯作者:
    W. Winter
Corrigendum to "Regularity for stably projectionless, simple C?-algebras" [J. Funct. Anal. 263 (2012) 1382-1407]
“稳定无投影、简单 C? 代数的正则性”的勘误 [J.
Corrigendum to "Regularity for stably projectionless, simple C*-algebras"
“稳定无投影、简单 C* 代数的正则性”勘误表
  • DOI:
    10.48550/arxiv.1508.02211
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Petzka H
  • 通讯作者:
    Petzka H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Tikuisis其他文献

Almost finiteness, comparison, and tracial math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"mi mathvariant="script"Z/mi/math-stability
几乎有限性、比较与迹数学 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"mi mathvariant="script"Z/mi/math 稳定性
  • DOI:
    10.1016/j.jfa.2021.109309
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Hung-Chang Liao;Aaron Tikuisis
  • 通讯作者:
    Aaron Tikuisis
Nuclear dimension, $$\mathcal{Z }$$ -stability, and algebraic simplicity for stably projectionless $$C^*$$ -algebras
  • DOI:
    10.1007/s00208-013-0951-0
  • 发表时间:
    2013-09-21
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Aaron Tikuisis
  • 通讯作者:
    Aaron Tikuisis
Relative commutants of strongly self-absorbing $$\mathrm {C}^*$$ -algebras
  • DOI:
    10.1007/s00029-016-0237-y
  • 发表时间:
    2016-04-29
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Ilijas Farah;Bradd Hart;Mikael Rørdam;Aaron Tikuisis
  • 通讯作者:
    Aaron Tikuisis

Aaron Tikuisis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Tikuisis', 18)}}的其他基金

Regularity and dimension for C*-algebras
C* 代数的正则性和维数
  • 批准号:
    EP/N00874X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Research Grant

相似国自然基金

EstimatingLarge Demand Systems with MachineLearning Techniques
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
计算电磁学高稳定度辛算法研究
  • 批准号:
    60931002
  • 批准年份:
    2009
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目

相似海外基金

Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
  • 批准号:
    10637323
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
  • 批准号:
    10753836
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
Pre-clinical testing of low intensity ultrasound as novel strategy to prevent paclitaxel-induced hair follicle damage in a humanized mouse model of chemotherapy-induced alopecia
低强度超声的临床前测试作为预防化疗引起的脱发人源化小鼠模型中紫杉醇引起的毛囊损伤的新策略
  • 批准号:
    10722518
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
Mentorship in Biobehavioral Mechanisms of Avoidant/Restrictive Food Intake Disorder
回避/限制性食物摄入障碍的生物行为机制的指导
  • 批准号:
    10783916
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
Evaluation of Left Bundle Branch Area Pacing As A Rescue Strategy for Cardiac Resynchronization Therapy Non-response in Patients With Heart Failure: A Randomized Controlled Trial
左束支区起搏作为心力衰竭患者心脏再同步治疗无反应的抢救策略的评估:随机对照试验
  • 批准号:
    10703634
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
Behavioral and neural mechanisms of reward responsivity across normative and at-risk adolescent development
规范和高危青少年发展中奖励反应的行为和神经机制
  • 批准号:
    10705724
  • 财政年份:
    2021
  • 资助金额:
    $ 0.51万
  • 项目类别:
Multiscale Models for Predicting Short and Long-term Outcome of Cardiac Resynchronization Therapy
用于预测心脏再同步治疗的短期和长期结果的多尺度模型
  • 批准号:
    10469500
  • 财政年份:
    2021
  • 资助金额:
    $ 0.51万
  • 项目类别:
Novel lead for selective His bundle sensing and low-threshold pacing
用于选择性希束传感和低阈值起搏的新型导线
  • 批准号:
    10421275
  • 财政年份:
    2021
  • 资助金额:
    $ 0.51万
  • 项目类别:
Biogenesis of the Trypanosoma brucei subpellicular microtubule array
布氏锥虫表膜下微管阵列的生物发生
  • 批准号:
    10490913
  • 财政年份:
    2021
  • 资助金额:
    $ 0.51万
  • 项目类别:
Behavioral and neural mechanisms of reward responsivity across normative and at-risk adolescent development
规范和高危青少年发展中奖励反应的行为和神经机制
  • 批准号:
    10387432
  • 财政年份:
    2021
  • 资助金额:
    $ 0.51万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了