Engineering Quantum Technology Systems on a Silicon Platform
在硅平台上设计量子技术系统
基本信息
- 批准号:EP/N003225/1
- 负责人:
- 金额:$ 193.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The vision of this project is to develop practical quantum technology for the accurate measurement of electrical currents and to develop high sensitivity detectors for gases such as carbon dioxide, methane (the gas used to heat homes) and carbon dioxide. Single electron transistors allow only one electron to travel through the device when switched on to form the electrical current. If the control gate is switched at a high frequency then the current through the device is simply the frequency times the charge on an electron and by counting the number of electrons, the current can be accurately measured. All such devices to date only work at low temperatures due to the small energy difference between the quantum states required for the transistor. I am proposing to make a single electron transistor which is far smaller than any previous reported device that will have large energies between the quantum states and operate at room temperature.Gas molecules absorb light at very specific wavelengths which in the mid-infrared part of the electromagnetic spectrum correspond to vibrational energy of the bonds which hold the atoms together to form the gas molecule. This provides a molecular fingerprint as each molecule only absorbs specific wavelengths which can therefore be used to identify the gas. Gas detectors already exist for carbon dioxide, carbon monoxide and methane gas by measuring the absorption of light at the molecular fingerprint wavelength but the sensitivity for small battery powered detectors in the home is at the level of parts per million. For many scientific, healthcare, industrial and security applications sensitivities require to be at least a thousand times better. To date systems for measuring at this accuracy are large, bulky and require large lasers. This proposal will use quantum technology to build a far smaller and cheaper chip scale gas detector with parts per billion sensitivity that could be integrated into mobile phones or used for battery power sensors.I am proposing to use the quantum nature of light to produce 2 individual packets of light called photons which will be at the same wavelength and at the same phase where the peaks and troughs of the waves are at the same points in space as the light travels through a waveguide. Heisenburg's uncertainty principle only allows us to measure the amplitude or the phase of the photons with a specific accuracy and the product is a constant. If we squeeze the phase of the light so that the accuracy in measuring the phase is reduced then we can measure the amplitude more accurately since it is only the product of the two that we cannot measure at a higher accuracy. This quantum approach of squeezing light allows far more sensitive measurements that are forbidden in classical measurement systems.The project brings together a range of UK companies, government agencies, standards laboratories and universities to deliver the portable current standard and the high sensitivity gas detector. I will be supplying demonstrators to a range of collaborators who will evaluate the performance with successful devices being transferred to UK companies to help develop next generation products. The project will also train 2 research associates and 2 PhD students in quantum technology.
该项目的愿景是开发实用的量子技术,用于精确测量电流,并开发用于二氧化碳、甲烷(用于家庭供暖的气体)和二氧化碳等气体的高灵敏度探测器。单电子晶体管在开启时只允许一个电子通过器件形成电流。如果控制栅极以高频率切换,则通过器件的电流简单地是频率乘以电子上的电荷,并且通过计数电子的数量,可以精确地测量电流。由于晶体管所需的量子态之间的能量差很小,迄今为止所有这些器件都只能在低温下工作。我建议制造一种单电子晶体管,它比以前报道的任何器件都要小得多,它将在量子态之间具有大的能量,并在室温下工作。气体分子吸收非常特定波长的光,在电磁波谱的中红外部分,这些波长对应于将原子结合在一起形成气体分子的键的振动能量。这提供了分子指纹,因为每个分子仅吸收特定波长,因此可以用于识别气体。通过测量分子指纹波长处的光吸收,已经存在用于二氧化碳、一氧化碳和甲烷气体的气体检测器,但家庭中小型电池供电的检测器的灵敏度为百万分之几的水平。对于许多科学、医疗保健、工业和安全应用,灵敏度要求至少提高1000倍。迄今为止,用于以这种精度进行测量的系统是大的、笨重的并且需要大的激光器。这项提议将利用量子技术来建造一个更小、更便宜的芯片级气体探测器,其灵敏度为十亿分之几,可以集成到移动的手机中或用于电池功率传感器。我提议利用光的量子性质来产生两个单独的光包,称为光子,它们将处于相同的波长和相同的相位,波的波峰和波谷都在同一个位置当光通过波导时,在空间中的点。海森堡的测不准原理只允许我们以特定的精度测量光子的振幅或相位,并且乘积是常数。如果我们压缩光的相位,使得测量相位的精度降低,那么我们可以更准确地测量振幅,因为它只是我们不能以更高精度测量的两者的乘积。该项目汇集了一系列英国公司、政府机构、标准实验室和大学,提供便携式电流标准和高灵敏度气体探测器。我将提供演示者的范围内的合作者将评估与成功的设备被转移到英国公司,以帮助开发下一代产品的性能。该项目还将培训2名研究助理和2名量子技术博士生。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One dimensional transport in top-down fabricated silicon nanowires
自上而下制造的硅纳米线中的一维传输
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Felix J Schlupp
- 通讯作者:Felix J Schlupp
Strain analysis of a Ge micro disk using precession electron diffraction
使用进动电子衍射对 Ge 微盘进行应变分析
- DOI:10.1063/1.5113761
- 发表时间:2019
- 期刊:
- 影响因子:3.2
- 作者:Bashir A
- 通讯作者:Bashir A
Geiger Mode Ge-on-Si Single-Photon Avalanche Diode Detectors
- DOI:10.1109/group4.2019.8853918
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:G. Buller;D. Dumas;Z. Greener;J. Kirdoda;K. Kuzmenko;R. Millar;M. Mirza;D. Paul;P. Vines
- 通讯作者:G. Buller;D. Dumas;Z. Greener;J. Kirdoda;K. Kuzmenko;R. Millar;M. Mirza;D. Paul;P. Vines
The Performance and Electrical Transport of Silicon Nanowires Transistors
硅纳米线晶体管的性能和电传输
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Douglas J Paul
- 通讯作者:Douglas J Paul
Challenges in engineering platform technologies for quantum technology
量子技术工程平台技术的挑战
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Douglas J Paul
- 通讯作者:Douglas J Paul
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Paul其他文献
Decoupling the dark count rate contributions in Ge-on-Si single photon avalanche diodes
解耦硅基硅单光子雪崩二极管中的暗计数率贡献
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
D. Dumas;C. Coughlan;Charles Smith;Muhammad M A Mirza;J. Kirdoda;Fiona Fleming;C. McCarthy;Hannah Mowbray;Xin Yi;Lisa Saalbach;Gerald Buller;Douglas Paul;Ross Millar - 通讯作者:
Ross Millar
Ge-on-Si single photon avalanche diode performance enhancement with photonic crystal nano-hole arrays
利用光子晶体纳米孔阵列增强硅基硅单光子雪崩二极管性能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
C. McCarthy;Charles Smith;Hannah Mowbray;Douglas Paul;Ross Millar - 通讯作者:
Ross Millar
Douglas Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Paul', 18)}}的其他基金
Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
- 批准号:
EP/X012689/1 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Research Grant
A Chip-Scale 2-Photon Rubidium Atomic Clock
芯片级 2 光子铷原子钟
- 批准号:
EP/Y00485X/1 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Research Grant
Probing the States of Single Molecules for Sensing and Multi-value Memory Applications
探测传感和多值存储器应用的单分子状态
- 批准号:
EP/V048341/1 - 财政年份:2022
- 资助金额:
$ 193.01万 - 项目类别:
Research Grant
Squeezed Light quAntum MEMS Gravimeter - SLAM Gravimeter
挤压光量子MEMS重力仪-SLAM重力仪
- 批准号:
EP/R043590/1 - 财政年份:2018
- 资助金额:
$ 193.01万 - 项目类别:
Research Grant
gMOT: Scaleable manufacture and evaluation of miniature cold atom traps
gMOT:微型冷原子陷阱的可扩展制造和评估
- 批准号:
EP/R021325/1 - 财政年份:2017
- 资助金额:
$ 193.01万 - 项目类别:
Research Grant
DIFFRACT - Integrated Distributed Feedback Lasers for Cold Atom Technologies
DIFFRACT - 用于冷原子技术的集成分布式反馈激光器
- 批准号:
EP/R001529/1 - 财政年份:2017
- 资助金额:
$ 193.01万 - 项目类别:
Research Grant
Room Temperature Terahertz Quantum Cascade Lasers on Silicon Substrates
硅衬底上的室温太赫兹量子级联激光器
- 批准号:
EP/H02364X/1 - 财政年份:2010
- 资助金额:
$ 193.01万 - 项目类别:
Research Grant
Silicon Resonant Tunnelling Diodes and Circuits
硅谐振隧道二极管和电路
- 批准号:
EP/G038961/1 - 财政年份:2009
- 资助金额:
$ 193.01万 - 项目类别:
Research Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
- 批准号:
2335283 - 财政年份:2024
- 资助金额:
$ 193.01万 - 项目类别:
Standard Grant
Pivots: Creating a Pathway to a Career in Quantum Information Science and Technology
支点:开辟量子信息科学与技术职业之路
- 批准号:
2321413 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Cooperative Agreement
Scalable semiconductor quantum processor with flip chip bonding technology
采用倒装芯片接合技术的可扩展半导体量子处理器
- 批准号:
IM230100396 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Mid-Career Industry Fellowships
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
- 批准号:
22KJ2450 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Highly Efficient Solar Window Technology Enabled by Quantum Dots
量子点实现的高效太阳能窗技术
- 批准号:
LP220200897 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Linkage Projects
IAQD - Unlocking the potential of Short Wave Infrared (SWIR) sensors with novel InAs Quantum Dots technology
IAQD - 利用新型 InAs 量子点技术释放短波红外 (SWIR) 传感器的潜力
- 批准号:
10042304 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Collaborative R&D
MWQD - Realising the true potential of Mid-Wave Infrared Sensors by improving affordability and adoption via Quantum Dot technology
MWQD - 通过量子点技术提高可承受性和采用率,实现中波红外传感器的真正潜力
- 批准号:
10066153 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Collaborative R&D
3LX - Developing low-cost, low-energy, low-detection limit X-Ray image sensors for critical industries using quantum dot technology
3LX - 使用量子点技术为关键行业开发低成本、低能耗、低检测限的 X 射线图像传感器
- 批准号:
10077184 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Collaborative R&D
Exploring the Ho ion, from quantum playground to technology enabler
探索 Ho 离子,从量子游乐场到技术推动者
- 批准号:
2850684 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Studentship
Accurate representation of quantum data for promoting materials science and quantum technology
量子数据的准确表示,促进材料科学和量子技术
- 批准号:
23K03307 - 财政年份:2023
- 资助金额:
$ 193.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




