Room Temperature Terahertz Quantum Cascade Lasers on Silicon Substrates
硅衬底上的室温太赫兹量子级联激光器
基本信息
- 批准号:EP/H02364X/1
- 负责人:
- 金额:$ 81.95万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The THz part of the electromagnetic spectrum has a number of potential applications which include oncology (skin cancer imaging), security imaging, THz bandwidth photonics, production monitoring and astronomy. The U.K. has been one of the pioneering countries in THz research but also in the exploitation of the technology with a number of companies including TeraView, QMC Instruments and Thruvision. At present most commercial imaging and spectroscopy systems use expensive femtosecond lasers with photoconductive antenna which fundamentally limits the power output to the microWatt level. Virtually all the applications referenced above require room temperature sources with over 10 mW of output power if parallel, fast, high performance imaging and/or spectroscopy systems are to be developed.While interband recombination of electrons and holes in Si and Ge are inefficient due to the indirect bandgap of the semiconductors, intersubband transitions provide an alternative path to a laser for low energy radiation such as THz frequencies. Intersubband unipolar lasers in the form of quantum cascade lasers have been demonstrated using III-V materials. Powers up to 248 mW at 10 K have been demonstrated at THz frequencies but due to polar optical phonon scattering and the associated reduction in intersubband lifetimes as the temperature is increased, such devices only operate at cryogenic temperatures. Previous work has been undertaken on p-type Si/SiGe quantum cascade lasers but due to large non-parabolicity and large effective mass (0.3 to 0.4 m_0) in the valence band, significant gain above 10 cm^-1 is difficult to engineer.In this proposal, we propose to use pure Ge quantum well designs and L-valley electrons for the first experimental demonstration of a n-type Si-based quantum cascade laser grown on top of a Si substrate. We demonstrate that the low effective of 0.118 m_0 and long non-polar lifetimes in the Ge/SiGe system potentially provide gain close to values demonstrated in GaAs THz quantum cascade lasers at 4 K and also potentially allow 300 K operation. Further the cheap and mature available Si process technology will allow at least a x100 reduction in the cost of THz quantum cascade lasers compared to GaAs devices. Such devices could be further developed into vertical cavity emitters (i.e. VCSELs) for parallel imaging applications or integrated with Si photonics to allow THz bandwidth telecoms. Finally we propose optically pumped structures which have the potential for broadband tunability, higher output powers and higher operating temperatures than THz quantum cascade lasers.This programme has brought together the modelling and design toolsets at Leeds University with the CVD growth expertise at Warwick University combined with the fabrication and measurement expertise of SiGe devices at Glasgow University to deliver internationally leading research. We have a number of industrial partners (AdvanceSis, Kelvin Nanotechnology and TeraView) who provide direct exploitation paths for the research. Successful room temperature quantum cascade lasers are an enabling technology for many new markets for THz applications including oncology (skin cancer imaging), security imaging, production monitoring, proteomics, drug discovery and astronomy.
电磁频谱的THz部分具有许多潜在的应用,包括肿瘤学(皮肤癌成像),安全成像,THz带宽光子学,生产监控和天文学。英国中国一直是太赫兹研究的先驱国家之一,也是开发该技术的先驱国家之一,包括TeraView,QMC Instruments和Thruvision在内的多家公司。目前,大多数商业成像和光谱系统使用昂贵的飞秒激光器与光电导天线,从根本上限制了功率输出到微瓦级。如果要开发并行、快速、高性能的成像和/或光谱系统,几乎所有上述应用都需要具有超过10 mW输出功率的室温源。虽然由于半导体的间接带隙,Si和Ge中的电子和空穴的带间复合是低效的,但是子带间跃迁为诸如THz频率的低能辐射提供了激光器的替代路径。量子级联激光器形式的子带间单极激光器已经使用III-V族材料进行了演示。功率高达248 mW,在10 K已被证明在太赫兹频率,但由于极性光学声子散射和相关的减少子带间的寿命,随着温度的增加,这样的设备只能在低温下工作。以前的工作是在p型Si/SiGe量子级联激光器上进行的,但由于大的非抛物性和大的有效质量,(0.3 ~ 0.4 m_0),因此很难设计出10 cm^-1以上的显著增益。在该方案中,我们建议使用纯Ge量子阱设计和L-谷电子的n型Si的第一个实验演示,基于量子级联激光器生长在硅衬底上。我们证明,低有效的0.118 m_0和长的非极性寿命的Ge/SiGe系统中潜在地提供接近的值在GaAs太赫兹量子级联激光器在4 K,也可能允许300 K操作。此外,与GaAs器件相比,廉价且成熟的可用Si工艺技术将允许THz量子级联激光器的成本至少降低100倍。这种器件可以进一步开发成用于并行成像应用的垂直腔发射器(即VCSEL),或者与Si光子集成以实现THz带宽电信。最后,我们提出了比太赫兹量子级联激光器具有宽带可调谐性、更高输出功率和更高工作温度的光泵结构。该计划将利兹大学的建模和设计工具集与化学气相沉积生长专业知识结合起来。沃里克大学的制造和测量专业知识与格拉斯哥大学的SiGe器件相结合,以提供国际领先的研究。我们有许多工业合作伙伴(AdvanceSis,Kelvin Nanotechnology和TeraView),他们为研究提供直接的开发路径。成功的室温量子级联激光器是太赫兹应用的许多新市场的一项使能技术,包括肿瘤学(皮肤癌成像)、安全成像、生产监控、蛋白质组学、药物发现和天文学。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mid-infrared plasmonic antennas made of electron-doped epitaxial germanium-on-silicon
由电子掺杂外延硅基锗制成的中红外等离子体天线
- DOI:10.1109/irmmw-thz.2013.6665614
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Ortolani M
- 通讯作者:Ortolani M
Extending the emission wavelength of Ge nanopillars to 2.25 µm using silicon nitride stressors.
使用氮化硅应力源将 Ge 纳米柱的发射波长延长至 2.25 µm。
- DOI:10.1364/oe.23.018193
- 发表时间:2015
- 期刊:
- 影响因子:3.8
- 作者:Millar RW
- 通讯作者:Millar RW
Expanding the Ge emission wavelength to 2.25 µm with SixNy strain engineering
通过 SixNy 应变工程将 Ge 发射波长扩展到 2.25 µm
- DOI:10.1016/j.tsf.2015.07.017
- 发表时间:2016
- 期刊:
- 影响因子:2.1
- 作者:Millar R
- 通讯作者:Millar R
Ge/SiGe quantum confined Stark effect modulators with low voltage swing at λ= 1550 nm
Ge/SiGe 量子限制斯塔克效应调制器,具有低电压摆幅
- DOI:10.1109/group4.2014.6961946
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Dumas D
- 通讯作者:Dumas D
Silver antimony Ohmic contacts to moderately doped n-type germanium
银锑与中等掺杂 n 型锗的欧姆接触
- DOI:10.1063/1.4873127
- 发表时间:2014
- 期刊:
- 影响因子:4
- 作者:Dumas D
- 通讯作者:Dumas D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Paul其他文献
Decoupling the dark count rate contributions in Ge-on-Si single photon avalanche diodes
解耦硅基硅单光子雪崩二极管中的暗计数率贡献
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
D. Dumas;C. Coughlan;Charles Smith;Muhammad M A Mirza;J. Kirdoda;Fiona Fleming;C. McCarthy;Hannah Mowbray;Xin Yi;Lisa Saalbach;Gerald Buller;Douglas Paul;Ross Millar - 通讯作者:
Ross Millar
Ge-on-Si single photon avalanche diode performance enhancement with photonic crystal nano-hole arrays
利用光子晶体纳米孔阵列增强硅基硅单光子雪崩二极管性能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
C. McCarthy;Charles Smith;Hannah Mowbray;Douglas Paul;Ross Millar - 通讯作者:
Ross Millar
Douglas Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Paul', 18)}}的其他基金
Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
- 批准号:
EP/X012689/1 - 财政年份:2023
- 资助金额:
$ 81.95万 - 项目类别:
Research Grant
A Chip-Scale 2-Photon Rubidium Atomic Clock
芯片级 2 光子铷原子钟
- 批准号:
EP/Y00485X/1 - 财政年份:2023
- 资助金额:
$ 81.95万 - 项目类别:
Research Grant
Probing the States of Single Molecules for Sensing and Multi-value Memory Applications
探测传感和多值存储器应用的单分子状态
- 批准号:
EP/V048341/1 - 财政年份:2022
- 资助金额:
$ 81.95万 - 项目类别:
Research Grant
Squeezed Light quAntum MEMS Gravimeter - SLAM Gravimeter
挤压光量子MEMS重力仪-SLAM重力仪
- 批准号:
EP/R043590/1 - 财政年份:2018
- 资助金额:
$ 81.95万 - 项目类别:
Research Grant
gMOT: Scaleable manufacture and evaluation of miniature cold atom traps
gMOT:微型冷原子陷阱的可扩展制造和评估
- 批准号:
EP/R021325/1 - 财政年份:2017
- 资助金额:
$ 81.95万 - 项目类别:
Research Grant
DIFFRACT - Integrated Distributed Feedback Lasers for Cold Atom Technologies
DIFFRACT - 用于冷原子技术的集成分布式反馈激光器
- 批准号:
EP/R001529/1 - 财政年份:2017
- 资助金额:
$ 81.95万 - 项目类别:
Research Grant
Engineering Quantum Technology Systems on a Silicon Platform
在硅平台上设计量子技术系统
- 批准号:
EP/N003225/1 - 财政年份:2015
- 资助金额:
$ 81.95万 - 项目类别:
Fellowship
Silicon Resonant Tunnelling Diodes and Circuits
硅谐振隧道二极管和电路
- 批准号:
EP/G038961/1 - 财政年份:2009
- 资助金额:
$ 81.95万 - 项目类别:
Research Grant
相似海外基金
Room temperature high-power terahertz semiconductor laser with high-quality beam shape and stable spectral emission
具有高质量光束形状和稳定光谱发射的室温高功率太赫兹半导体激光器
- 批准号:
2149908 - 财政年份:2022
- 资助金额:
$ 81.95万 - 项目类别:
Standard Grant
Development of Room Temperature Terahertz Quantum Cascade Lasers
室温太赫兹量子级联激光器的研制
- 批准号:
2012258 - 财政年份:2020
- 资助金额:
$ 81.95万 - 项目类别:
Standard Grant
Development of continuous-wave terahertz light source with broadband and room temperature operation
开发宽带、室温工作的连续波太赫兹光源
- 批准号:
18K04274 - 财政年份:2018
- 资助金额:
$ 81.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural elaboration and external cavity control of semiconductor superlattices with room-temperature terahertz gain
具有室温太赫兹增益的半导体超晶格的结构精化和外腔控制
- 批准号:
17H03232 - 财政年份:2017
- 资助金额:
$ 81.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: High-performance Optical-phonon-based Terahertz Sources Operating at Room Temperature
EAGER:在室温下运行的基于光学声子的高性能太赫兹源
- 批准号:
1748518 - 财政年份:2017
- 资助金额:
$ 81.95万 - 项目类别:
Standard Grant
PFI:AIR-TT: Continuous-wave room-temperature terahertz quantum cascade laser sources
PFI:AIR-TT:连续波室温太赫兹量子级联激光源
- 批准号:
1701141 - 财政年份:2017
- 资助金额:
$ 81.95万 - 项目类别:
Standard Grant
Diffraction-grating coupled surface emitting Terahertz quantum cascade laser source for high power, room temperature continuous wave operation
用于高功率、室温连续波操作的衍射光栅耦合表面发射太赫兹量子级联激光源
- 批准号:
1607838 - 财政年份:2016
- 资助金额:
$ 81.95万 - 项目类别:
Standard Grant
SBIR Phase I: Broadly Tunable Room-Temperature Terahertz Quantum Cascade Laser Sources And Systems
SBIR 第一阶段:广泛可调的室温太赫兹量子级联激光源和系统
- 批准号:
1448707 - 财政年份:2015
- 资助金额:
$ 81.95万 - 项目类别:
Standard Grant
Room Temperature Tunable Plasmonic-Enhanced Graphene Terahertz Photodetectors
室温可调谐等离子体增强石墨烯太赫兹光电探测器
- 批准号:
1309750 - 财政年份:2013
- 资助金额:
$ 81.95万 - 项目类别:
Standard Grant
Room temperature operating continuous wave terahertz light source via shallow electronic states transitions in semiconductors
通过半导体中的浅电子态跃迁在室温下运行连续波太赫兹光源
- 批准号:
23656392 - 财政年份:2011
- 资助金额:
$ 81.95万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research