Categorical Symplectic Topology
分类辛拓扑
基本信息
- 批准号:EP/N01815X/1
- 负责人:
- 金额:$ 128.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is an intra-disciplinary proposal to study classical (and novel) questions in topology and dynamical systems by using sophisticated new ideas from algebra, which were in turn developed following insight from ``mirror symmetry" in quantum field theory. A fundamental question in dynamics is to understand periodic orbits of systems (asteroids, satellites, fluid flows, motions of rigid jointed bodies). Remarkably, some of our most powerful methods for detecting such periodic orbits make essential use of complex analysis, and partial differential equations for ``holomorphic curves", which are closely related to area-minimising surfaces like soap films. In the last twenty years, it has been understood that counts of these special surfaces give numbers which are not independent of one another, but which should be bundled together into complicated algebraic structures, and which satisfy remarkable identities. Aspects of this insight arose first in theoretical physics of quantum field theory, via a duality in string theory called mirror symmetry, which can be viewed as a far-reaching generalisation of Maxwell's classical electric-magnetic duality. Mirror symmetry relates different physical theories which are models for a single structure in nature but which are superficially described by very different kinds of mathematics. This enables insights and structures which seem natural in one area to be carried ``to the other side of the mirror" where they yield powerful new methods, and intriguing predictions, which are just beginning to be understood.This Fellowship will study the algebraic structures in topology that have been developed following mirror symmetry, and apply them to new questions in topology and dynamics. These questions relate to the structure of the set of symmetries of a mechanical system, to the entropy and mixing properties of such symmetries, to the complexity of ``random" knots in space, and to periodic orbit problems for games of billiards on a polygonal table.
这是一个跨学科的提案,旨在通过使用代数中复杂的新思想来研究拓扑和动力系统中的经典(和新颖)问题,这些新思想又是根据量子场论中“镜像对称”的见解而发展起来的。动力学的一个基本问题是理解系统的周期轨道(小行星、卫星、流体流动、刚性关节体的运动)。值得注意的是,我们的一些最强大的方法 为了检测这种周期性轨道,必须使用复杂分析和“全纯曲线”的偏微分方程,它们与肥皂膜等面积最小化表面密切相关。在过去的二十年里,人们已经认识到,这些特殊曲面的计数给出的数字并不是彼此独立的,而是应该捆绑在一起形成复杂的代数结构,并且满足显着的恒等式。这种见解的各个方面首先出现在量子场论的理论物理学中,通过弦理论中称为镜像对称的对偶性,这可以被视为麦克斯韦经典电磁对偶性的深远概括。镜像对称涉及不同的物理理论,这些理论是自然界中单一结构的模型,但表面上是由非常不同类型的数学描述的。这使得在一个领域中看似自然的见解和结构能够被带到“镜子的另一边”,在那里它们产生了强大的新方法和有趣的预测,而这些刚刚开始被理解。该奖学金将研究在镜像对称之后发展起来的拓扑中的代数结构,并将它们应用于拓扑和动力学中的新问题。这些问题与机械系统对称集的结构有关, 这种对称性的熵和混合特性,空间中“随机”结的复杂性,以及多边形桌上台球游戏的周期轨道问题。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fukaya categories of surfaces, spherical objects and mapping class groups
表面、球形物体和映射类组的 Fukaya 类别
- DOI:10.1017/fms.2021.21
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Auroux, Denis;Smith, Ivan
- 通讯作者:Smith, Ivan
Khovanov homology from Floer cohomology
Floer 上同调的 Khovanov 同调
- DOI:10.1090/jams/902
- 发表时间:2018
- 期刊:
- 影响因子:3.9
- 作者:Abouzaid M
- 通讯作者:Abouzaid M
Bounds on Wahl singularities from symplectic topology
- DOI:10.14231/ag-2020-003
- 发表时间:2017-08
- 期刊:
- 影响因子:1.5
- 作者:J. Evans;I. Smith
- 通讯作者:J. Evans;I. Smith
Quantitative Heegaard Floer cohomology and the Calabi invariant
- DOI:10.1017/fmp.2022.18
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Daniel Cristofaro-Gardiner;Vincent Humilière;C. Mak;Sobhan Seyfaddini;I. Smith
- 通讯作者:Daniel Cristofaro-Gardiner;Vincent Humilière;C. Mak;Sobhan Seyfaddini;I. Smith
Symplectomorphisms of exotic discs
- DOI:10.5802/jep.71
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Roger Casals;Ailsa Keating;I. Smith;S. Courte
- 通讯作者:Roger Casals;Ailsa Keating;I. Smith;S. Courte
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Smith其他文献
Gromov-Witten Invariants in Complex and Morava-Local K-Theories
复形和莫拉瓦局部 K 理论中的格罗莫夫 - 温特不变量
- DOI:
10.1007/s00039-024-00697-4 - 发表时间:
2024-10-07 - 期刊:
- 影响因子:2.500
- 作者:
Mohammed Abouzaid;Mark McLean;Ivan Smith - 通讯作者:
Ivan Smith
Ivan Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Smith', 18)}}的其他基金
Floer theory beyond Floer (FloerPlus35)
Floer 之外的 Floer 理论 (FloerPlus35)
- 批准号:
EP/X030660/1 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant
Regulation of Glutathione Metabolism in Mutant Barley
突变大麦中谷胱甘肽代谢的调节
- 批准号:
8421065 - 财政年份:1985
- 资助金额:
$ 128.19万 - 项目类别:
Standard Grant
Compartmentation of Sulfur Metabolism in Plants
植物中硫代谢的区室
- 批准号:
8104535 - 财政年份:1981
- 资助金额:
$ 128.19万 - 项目类别:
Standard Grant
An In-Depth Comprehensive Technology Assessment Ofintegrated Hog Farming
生猪综合养殖的深入综合技术评估
- 批准号:
7302835 - 财政年份:1974
- 资助金额:
$ 128.19万 - 项目类别:
Contract
相似海外基金
Conference: Trisections Workshop: Connections with Symplectic Topology
会议:三等分研讨会:与辛拓扑的联系
- 批准号:
2308782 - 财政年份:2023
- 资助金额:
$ 128.19万 - 项目类别:
Standard Grant
Fundamental and Statistical Symplectic Topology
基本和统计辛拓扑
- 批准号:
RGPIN-2017-06566 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Discovery Grants Program - Individual
Symplectic topology and equivariant geometry
辛拓扑和等变几何
- 批准号:
RGPIN-2020-06428 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Symplectic Topology
辛拓扑的新领域
- 批准号:
EP/W015889/1 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant
Topics in mirror symmetry and symplectic topology
镜像对称和辛拓扑主题
- 批准号:
2746276 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Studentship
New Frontiers in Symplectic Topology
辛拓扑的新领域
- 批准号:
EP/W015749/1 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Research Grant
Symplectic topology, generalized geometry and their applications
辛拓扑、广义几何及其应用
- 批准号:
RGPIN-2019-05899 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Discovery Grants Program - Individual
Floer for Three: Symplectic Methods in Low-Dimensional Topology
三人花:低维拓扑中的辛方法
- 批准号:
2204214 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Continuing Grant
Metrics and intersections in symplectic and contact topology
辛和接触拓扑中的度量和交集
- 批准号:
RGPIN-2017-05596 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Discovery Grants Program - Individual
Singularities, symplectic topology and mirror symmetry
奇点、辛拓扑和镜像对称
- 批准号:
EP/W001780/1 - 财政年份:2022
- 资助金额:
$ 128.19万 - 项目类别:
Fellowship














{{item.name}}会员




