Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
基本信息
- 批准号:EP/N020057/1
- 负责人:
- 金额:$ 48.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the 20th century, the development of silicon-based electronics revolutionised the world, becoming the most pervasive technology behind modern-day life. In the 21st century, it is envisaged that technology will move to the use of light (photons) together with, or in place of, electrons, providing a dramatic increase in the speed and quantity of information processing whilst also reducing the energy required to do so. Making this transition to an all optical 'photonic' technology has proved to be a complex task, as the material of choice for electronics, silicon, is limited in its ability to control light. In the search for alternative materials, a class of glasses called amorphous chalcogenides (a-ChGs) have shown remarkable promise, to the point where they have been referred to as the 'optical equivalent of silicon'. Chalcogenides are materials which contain one or more of the elements sulfur, selenium or tellurium as a major constituent. These materials are already widely used in applications such as photovoltaics, memory (e.g. DVDs), advanced optical devices (e.g. lasers), and in some thermoelectric generation systems. It is accepted that the move to all-optical technologies will require an intermediate stage where information processing is undertaken using a hybrid 'optoelectronic' system. This provides a strong and compelling argument for the development of a-ChGs, as they can be deposited on Si to form a hybrid approach en-route to their use as an all-optical platform.Whilst the optical properties of a-ChGs may be controlled and modified it has proved to be extremely difficult to modify their electronic properties during the material preparation, which has typically involved melting at high temperatures. Any impurities that are added to these materials in order to change the electronic behaviour are ineffective under these conditions due to the ability of the ChG material to reorder itself when melted, and so negate the desired doping effect. We have successfully pioneered a method to modify their properties by introducing dopants into a-ChGs below their melting temperature, thus not allowing the material to reorder, using ion-implantation. This method of doping allows precise control of the type of impurity introduced and is widely used in silicon technologies. As a result of this work, we have demonstrated the ability to reverse the majority charge carrier type from holes (p-type) to electrons (n-type) in a spatially localised way. This step-changing achievement enabled us to demonstrate the fabrication of optically active pn-junctions in a-ChGs, which will act as the enabling catalyst for the development of future photonic technologies.In this project we will seek to develop a full understanding of the process of carrier-type reversal on the atomic scale, and use this information to optimize it, and the materials that are to be modified, so as to add further functionality. We will also develop the required advanced engineering methods which relate to the control and activation of dopants introduced using ion-implantation into a-ChGs. Together, these will enable the demonstration of a series of optoelectronic devices demonstrating the key functionalities required to build an integrated optoelectronic technology. This programme will consolidate the position of the UK as the world leader in the field of non-equilibrium doping of chalcogenides. We will, in this way, champion these materials in the world's transition to beyond CMOS technology and therefore directly contribute to the continuing growth of the knowledge economy. We will train the next generation of scientists and engineers in state-of-the-art techniques to ensure that the UK maintains the expertise base required for this purpose, aim to ensure that the impact of this work is maximised and accelerated where possible, and communicate the results widely, including to all stakeholders in this research.
在20世纪,硅基电子技术的发展彻底改变了世界,成为现代生活背后最普及的技术。预计在21世纪,技术将转向与电子一起使用光(光子),或取代电子,从而显著提高信息处理的速度和数量,同时也减少了这样做所需的能量。事实证明,实现向全光学“光子”技术的转变是一项复杂的任务,因为电子产品的首选材料硅对光的控制能力有限。在寻找替代材料的过程中,一种被称为无定形硫化物(a-ChGs)的玻璃显示出了非凡的前景,以至于它们被称为“硅的光学等价物”。硫化物是含有一种或多种元素硫、硒或碲作为主要成分的材料。这些材料已经被广泛应用于光伏、存储器(例如DVD)、先进光学设备(例如激光器)以及一些热电发电系统中。人们承认,向全光技术的转变将需要一个中间阶段,在这个阶段中,信息处理是使用混合的光电子系统进行的。这为a-ChGs的发展提供了强有力且令人信服的论据,因为它们可以沉积在Si上以形成一种混合方法,从而将其用作全光学平台。尽管a-ChGs的光学性质可以被控制和修改,但事实证明,在材料制备过程中修改它们的电子性质是极其困难的,这通常涉及高温熔化。在这些条件下,为了改变电子行为而添加到这些材料中的任何杂质都是无效的,因为CHG材料在熔化时能够重新排序,从而抵消了所需的掺杂效应。我们已经成功地开创了一种通过在a-ChGs中引入低于其熔化温度的掺杂剂来改变其性质的方法,从而不允许使用离子注入来重新排列材料。这种掺杂方法允许精确控制引入的杂质类型,并在硅技术中得到广泛应用。作为这项工作的结果,我们展示了以空间局域的方式将大多数电荷载流子类型从空穴(p型)转变为电子(n型)的能力。这一改变步骤的成就使我们能够展示a-ChGs中光学活性pn结的制造,这将成为未来光子技术发展的催化剂。在这个项目中,我们将寻求在原子尺度上全面理解载流子类型反转的过程,并利用这些信息来优化它,以及将要修饰的材料,以增加进一步的功能。我们还将开发所需的先进工程方法,这些方法与通过离子注入a-ChGs引入的掺杂剂的控制和激活有关。总之,这些将使一系列光电子器件的展示成为可能,这些器件展示了构建集成光电子技术所需的关键功能。该方案将巩固英国在硫系化合物非平衡掺杂领域的世界领先地位。通过这种方式,我们将在世界向Beyond CMOS技术过渡的过程中支持这些材料,从而直接为知识经济的持续增长做出贡献。我们将培训下一代科学家和工程师使用最先进的技术,以确保英国保持这一目的所需的专业知识基础,旨在确保这项工作的影响最大化并在可能的情况下加速,并广泛传播结果,包括向本研究的所有利益相关者传达。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical and electrical properties of alkaline-doped and As-alloyed amorphous selenium films
- DOI:10.1007/s10854-019-01386-x
- 发表时间:2019-09-01
- 期刊:
- 影响因子:2.8
- 作者:Gunes, O.;Koughia, C.;Kasap, S. O.
- 通讯作者:Kasap, S. O.
Photo-Seebeck study of amorphous germanium-tellurium-oxide films
非晶氧化锗碲薄膜的光塞贝克研究
- DOI:10.1007/s10854-020-04702-y
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gholizadeh A
- 通讯作者:Gholizadeh A
Frequency- and time-resolved photocurrents in vacuum-deposited stabilised a-Se films: the role of valence alternation defects
真空沉积稳定 a-Se 薄膜中的频率和时间分辨光电流:价态交替缺陷的作用
- DOI:10.1007/s10854-020-04111-1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Jacobs J
- 通讯作者:Jacobs J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Curry其他文献
Richard Curry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Curry', 18)}}的其他基金
Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
- 批准号:
EP/X035093/1 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
- 批准号:
EP/V008188/1 - 财政年份:2021
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
- 批准号:
EP/V001914/1 - 财政年份:2021
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
- 批准号:
NE/T014792/1 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
- 批准号:
EP/T01914X/1 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
- 批准号:
EP/R025576/1 - 财政年份:2018
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/2 - 财政年份:2017
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/2 - 财政年份:2017
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
- 批准号:
EP/N015215/1 - 财政年份:2016
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/1 - 财政年份:2015
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Development and clinical application of a non-invasive drug sensitivity assessment method for ex situ conservation of threatened avian species
濒危鸟类迁地保护非侵入性药敏评估方法的开发及临床应用
- 批准号:
23K18531 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of SERS substrate made of melt-blown non-woven fabric and its application to odor sensors
熔喷无纺布SERS基底的研制及其在气味传感器中的应用
- 批准号:
23K03881 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on development of non-interactive MPC capable of addition and deletion of parties and its application to machine learning
可增删方的非交互式MPC开发及其在机器学习中的应用研究
- 批准号:
23K11109 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and application of a non-hydrostatic quasi-3D analysis method for flood flows and waves to elucidate sediment dynamics in estuarine areas
洪水流和波浪的非静水准三维分析方法的开发和应用,以阐明河口地区的沉积物动态
- 批准号:
23K04050 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Antiferromagnetic-Ferromagnetic Phase Transition by an Electric Field Application and Non-Volatile Magnetic Memory Application
通过电场应用和非易失性磁存储器应用开发反铁磁-铁磁相变
- 批准号:
21K04159 - 财政年份:2021
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and application of non-thermal high frequency IRE to treat hepatic tumors
非热高频IRE治疗肝脏肿瘤的开发及应用
- 批准号:
10577902 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Development and application of non-thermal high frequency IRE to treat hepatic tumors
非热高频IRE治疗肝脏肿瘤的开发及应用
- 批准号:
10375472 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Development and application of non-invasive metabolic monitor
无创代谢监测仪的研制及应用
- 批准号:
19K04432 - 财政年份:2019
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Application as therapeutic agents of non-anticoagulant desulfated heparin for brain injury
非抗凝脱硫肝素脑损伤治疗药物的研制及应用
- 批准号:
19K18366 - 财政年份:2019
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and application of computational method for transport of non-spherical particles in gas-solid fluidized bed with large temperature difference
大温差气固流化床非球形颗粒输运计算方法的开发与应用
- 批准号:
19K20284 - 财政年份:2019
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




