Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
基本信息
- 批准号:EP/N020057/1
- 负责人:
- 金额:$ 48.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the 20th century, the development of silicon-based electronics revolutionised the world, becoming the most pervasive technology behind modern-day life. In the 21st century, it is envisaged that technology will move to the use of light (photons) together with, or in place of, electrons, providing a dramatic increase in the speed and quantity of information processing whilst also reducing the energy required to do so. Making this transition to an all optical 'photonic' technology has proved to be a complex task, as the material of choice for electronics, silicon, is limited in its ability to control light. In the search for alternative materials, a class of glasses called amorphous chalcogenides (a-ChGs) have shown remarkable promise, to the point where they have been referred to as the 'optical equivalent of silicon'. Chalcogenides are materials which contain one or more of the elements sulfur, selenium or tellurium as a major constituent. These materials are already widely used in applications such as photovoltaics, memory (e.g. DVDs), advanced optical devices (e.g. lasers), and in some thermoelectric generation systems. It is accepted that the move to all-optical technologies will require an intermediate stage where information processing is undertaken using a hybrid 'optoelectronic' system. This provides a strong and compelling argument for the development of a-ChGs, as they can be deposited on Si to form a hybrid approach en-route to their use as an all-optical platform.Whilst the optical properties of a-ChGs may be controlled and modified it has proved to be extremely difficult to modify their electronic properties during the material preparation, which has typically involved melting at high temperatures. Any impurities that are added to these materials in order to change the electronic behaviour are ineffective under these conditions due to the ability of the ChG material to reorder itself when melted, and so negate the desired doping effect. We have successfully pioneered a method to modify their properties by introducing dopants into a-ChGs below their melting temperature, thus not allowing the material to reorder, using ion-implantation. This method of doping allows precise control of the type of impurity introduced and is widely used in silicon technologies. As a result of this work, we have demonstrated the ability to reverse the majority charge carrier type from holes (p-type) to electrons (n-type) in a spatially localised way. This step-changing achievement enabled us to demonstrate the fabrication of optically active pn-junctions in a-ChGs, which will act as the enabling catalyst for the development of future photonic technologies.In this project we will seek to develop a full understanding of the process of carrier-type reversal on the atomic scale, and use this information to optimize it, and the materials that are to be modified, so as to add further functionality. We will also develop the required advanced engineering methods which relate to the control and activation of dopants introduced using ion-implantation into a-ChGs. Together, these will enable the demonstration of a series of optoelectronic devices demonstrating the key functionalities required to build an integrated optoelectronic technology. This programme will consolidate the position of the UK as the world leader in the field of non-equilibrium doping of chalcogenides. We will, in this way, champion these materials in the world's transition to beyond CMOS technology and therefore directly contribute to the continuing growth of the knowledge economy. We will train the next generation of scientists and engineers in state-of-the-art techniques to ensure that the UK maintains the expertise base required for this purpose, aim to ensure that the impact of this work is maximised and accelerated where possible, and communicate the results widely, including to all stakeholders in this research.
在20世纪世纪,硅基电子产品的发展彻底改变了世界,成为现代生活背后最普遍的技术。在世纪,设想技术将转向使用光(光子)连同电子或代替电子,从而提供信息处理的速度和数量的显著增加,同时还减少这样做所需的能量。事实证明,向全光学“光子”技术的过渡是一项复杂的任务,因为电子产品所选择的材料硅在控制光的能力方面是有限的。在寻找替代材料的过程中,一类被称为非晶硫属化物(a-ChG)的玻璃显示出了非凡的前景,以至于它们被称为“硅的光学等效物”。硫属化物是含有元素硫、硒或碲中的一种或多种作为主要成分的材料。这些材料已经被广泛应用于诸如光电子学、存储器(例如DVD)、高级光学器件(例如激光器)和一些热电发电系统中。人们普遍认为,向全光技术的转变需要一个中间阶段,在这个阶段中,信息处理是使用混合“光电”系统进行的。这为a-ChG的发展提供了强有力的和令人信服的论据,因为它们可以沉积在Si上以形成混合方法,从而将其用作全光学平台。虽然a-ChG的光学性质可以被控制和修改,但已经证明在材料制备期间修改它们的电子性质是极其困难的,这通常涉及在高温下熔化。为了改变电子行为而添加到这些材料中的任何杂质在这些条件下都是无效的,这是因为ChG材料在熔化时能够重新排序自身,因此否定了期望的掺杂效果。我们已经成功地开创了一种方法,通过在a-ChG的熔化温度以下将掺杂剂引入a-ChG来修改它们的特性,从而不允许材料重新排序,使用离子注入。这种掺杂方法允许精确控制引入的杂质类型,并广泛用于硅技术。作为这项工作的结果,我们已经证明了在空间上局部化的方式将多数电荷载流子类型从空穴(p型)反转为电子(n型)的能力。这一突破性的成就使我们能够展示在a-ChGs中制造光学活性pn结,这将成为未来光子技术发展的催化剂。在这个项目中,我们将寻求在原子尺度上全面了解载流子类型反转的过程,并使用这些信息来优化它,以及要修改的材料,以便增加更多功能。我们还将开发所需的先进工程方法,这些方法涉及使用离子注入引入a-ChG中的掺杂剂的控制和激活。总之,这些将能够演示一系列光电设备,展示建立集成光电技术所需的关键功能。该计划将巩固英国在硫属化物非平衡掺杂领域的世界领先地位。通过这种方式,我们将在世界向超越CMOS技术的过渡中支持这些材料,从而直接为知识经济的持续增长做出贡献。我们将用最先进的技术培训下一代科学家和工程师,以确保英国保持为此目的所需的专业知识基础,旨在确保这项工作的影响最大化并在可能的情况下加速,并广泛传播结果,包括向这项研究的所有利益相关者。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical and electrical properties of alkaline-doped and As-alloyed amorphous selenium films
- DOI:10.1007/s10854-019-01386-x
- 发表时间:2019-09-01
- 期刊:
- 影响因子:2.8
- 作者:Gunes, O.;Koughia, C.;Kasap, S. O.
- 通讯作者:Kasap, S. O.
Photo-Seebeck study of amorphous germanium-tellurium-oxide films
非晶氧化锗碲薄膜的光塞贝克研究
- DOI:10.1007/s10854-020-04702-y
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gholizadeh A
- 通讯作者:Gholizadeh A
Frequency- and time-resolved photocurrents in vacuum-deposited stabilised a-Se films: the role of valence alternation defects
真空沉积稳定 a-Se 薄膜中的频率和时间分辨光电流:价态交替缺陷的作用
- DOI:10.1007/s10854-020-04111-1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Jacobs J
- 通讯作者:Jacobs J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Curry其他文献
Richard Curry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Curry', 18)}}的其他基金
Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
- 批准号:
EP/X035093/1 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
- 批准号:
EP/V008188/1 - 财政年份:2021
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
- 批准号:
EP/V001914/1 - 财政年份:2021
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
- 批准号:
NE/T014792/1 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
- 批准号:
EP/T01914X/1 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
- 批准号:
EP/R025576/1 - 财政年份:2018
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/2 - 财政年份:2017
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/2 - 财政年份:2017
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
- 批准号:
EP/N015215/1 - 财政年份:2016
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/1 - 财政年份:2015
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Development and clinical application of a non-invasive drug sensitivity assessment method for ex situ conservation of threatened avian species
濒危鸟类迁地保护非侵入性药敏评估方法的开发及临床应用
- 批准号:
23K18531 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of SERS substrate made of melt-blown non-woven fabric and its application to odor sensors
熔喷无纺布SERS基底的研制及其在气味传感器中的应用
- 批准号:
23K03881 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on development of non-interactive MPC capable of addition and deletion of parties and its application to machine learning
可增删方的非交互式MPC开发及其在机器学习中的应用研究
- 批准号:
23K11109 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and application of a non-hydrostatic quasi-3D analysis method for flood flows and waves to elucidate sediment dynamics in estuarine areas
洪水流和波浪的非静水准三维分析方法的开发和应用,以阐明河口地区的沉积物动态
- 批准号:
23K04050 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Antiferromagnetic-Ferromagnetic Phase Transition by an Electric Field Application and Non-Volatile Magnetic Memory Application
通过电场应用和非易失性磁存储器应用开发反铁磁-铁磁相变
- 批准号:
21K04159 - 财政年份:2021
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and application of non-thermal high frequency IRE to treat hepatic tumors
非热高频IRE治疗肝脏肿瘤的开发及应用
- 批准号:
10577902 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Development and application of non-thermal high frequency IRE to treat hepatic tumors
非热高频IRE治疗肝脏肿瘤的开发及应用
- 批准号:
10375472 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Development and application of non-invasive metabolic monitor
无创代谢监测仪的研制及应用
- 批准号:
19K04432 - 财政年份:2019
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Application as therapeutic agents of non-anticoagulant desulfated heparin for brain injury
非抗凝脱硫肝素脑损伤治疗药物的研制及应用
- 批准号:
19K18366 - 财政年份:2019
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and application of computational method for transport of non-spherical particles in gas-solid fluidized bed with large temperature difference
大温差气固流化床非球形颗粒输运计算方法的开发与应用
- 批准号:
19K20284 - 财政年份:2019
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




