Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
基本信息
- 批准号:EP/R025576/1
- 负责人:
- 金额:$ 89.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most advanced materials are actually composite systems where each part is specifically tailored to provide a particular functionality often via doping. In electronic devices this may be p- or n-type behaviour (the preference to conduct positive of negative charges), in optical devices the ability to emit light at a given wavelength (such as in the infrared for optical fibre communications), or in magnetic materials the ability to store information based on the direction of a magnetic field for example. To enable the realisation of new devices it is essential to increase the density of functionality within a given device volume. Simple miniaturisation (i.e. to fit more devices of the same type but of smaller size) is limited in scope as the nanoscale regime is reached, not only by the well-known emergence of quantum effects, but by the simple capability to control the materials engineering on this scale. Self-assembly methods for example enable the creation of 0D (so called 'quantum dots' or 'artificial atoms'), 1D (wire-like) and 2D (sheet-like) materials with unique properties, but the subsequent control and modification of these is non-trivial and has yet to be demonstrated in many cases. This research aims to establish a Platform for Nanoscale Advanced Materials Engineering (P-NAME) facility that incorporates a new tool which will provide the capability required to deliver a fundamental change in our ability to design and engineer materials. The principle of the technique that we will adapt, is that which revolutionised the micro-electronics industry in the 20th century (ion-doping) but applied on the nanoscale for the first time. Furthermore, the P-NAME tool will be compatible with a scalable technology platform and therefore compatible with its use in high-tech device manufacture. Without this capability the production of increasingly complex materials offering enhance functionality at lower-power consumption will be difficult to achieve.The P-NAME facility will be established within a new UK National Laboratory for Advanced Materials (the Henry Royce Institute) at the University of Manchester. Access to the tool will be made available to UK academics and industry undertaking research into advanced functional materials and devices development.
大多数先进的材料实际上是复合系统,每个部分经常通过掺杂来提供特定功能。在电子设备中,这可能是P-或N型行为(偏爱进行负电荷的阳性),在光学设备中,可以在给定波长处发光的能力(例如,在光纤通信的红外线中发光),或者在磁性材料中,可以基于磁场方向存储信息的能力。为了实现新设备的实现,必须在给定设备体积内提高功能密度。简单的小型化(即适合相同类型的更多设备,但尺寸较小的设备)在范围内受到限制,因为纳米级政权得以达到量子效应的众所周知出现,而且还可以通过在此规模上控制材料工程的简单能力。例如,自组装方法例如,可以创建0D(所谓的“量子点”或“人造原子”),1D(线状)和2D(类似于薄板的)材料具有独特的特性,但随后对这些材料的控制和修改是无关紧要的,在许多情况下尚未证明。这项研究旨在建立一个纳米级高级材料工程(P-NAME)设施的平台,该工具结合了一种新工具,该工具将提供我们设计和工程材料能力的基本变化所需的能力。我们要适应的技术的原则是彻底改变了20世纪的微电子产业(ION兴奋剂),但首次应用于纳米级。此外,P-Name工具将与可扩展的技术平台兼容,因此与其在高科技设备制造中的使用兼容。如果没有这种能力,就难以实现越来越复杂的材料在较低功率消耗时提高功能性的生产。曼彻斯特大学的新英国国家高级材料实验室(亨利·罗伊斯研究所)将建立P-NAME设施。英国学者和行业对高级功能材料和设备开发的研究将提供使用该工具。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A High-Resolution Versatile Focused Ion Implantation Platform for Nanoscale Engineering
用于纳米工程的高分辨率多功能聚焦离子注入平台
- DOI:10.1002/adem.202300889
- 发表时间:2023
- 期刊:
- 影响因子:3.6
- 作者:Adshead M
- 通讯作者:Adshead M
Single Ion Implantation of Bismuth
- DOI:10.1002/pssa.202000237
- 发表时间:2020-08-02
- 期刊:
- 影响因子:2
- 作者:Cassidy, Nathan;Blenkinsopp, Paul;Cox, David
- 通讯作者:Cox, David
Error Rates in Deterministic Ion Implantation for Qubit Arrays
量子位阵列确定性离子注入的错误率
- DOI:10.1002/pssb.202000615
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Murdin B
- 通讯作者:Murdin B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Curry其他文献
Richard Curry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Curry', 18)}}的其他基金
Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
- 批准号:
EP/X035093/1 - 财政年份:2023
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
- 批准号:
EP/V008188/1 - 财政年份:2021
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
- 批准号:
EP/V001914/1 - 财政年份:2021
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
- 批准号:
NE/T014792/1 - 财政年份:2020
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
- 批准号:
EP/T01914X/1 - 财政年份:2020
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/2 - 财政年份:2017
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/2 - 财政年份:2017
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
- 批准号:
EP/N015215/1 - 财政年份:2016
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/1 - 财政年份:2016
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/1 - 财政年份:2015
- 资助金额:
$ 89.47万 - 项目类别:
Research Grant
相似国自然基金
纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
- 批准号:62374096
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
- 批准号:12305303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
先进光源用X射线椭球聚焦镜的纳米级制作和检测方法研究
- 批准号:12305365
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
肿瘤细胞纳米级凋亡小体诱导获得性胸腺耐受效应的作用与机制研究
- 批准号:32300576
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于亚纳米级高速摩擦抛光下的金刚石亚表面跨尺度损伤演变与控制机制
- 批准号:52302036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10437327 - 财政年份:2022
- 资助金额:
$ 89.47万 - 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10676761 - 财政年份:2022
- 资助金额:
$ 89.47万 - 项目类别:
Addressing Chemoresistance in Pancreatic and Ovarian Cancers: Photodynamic Priming and Repurposing of Tetracyclines using Targeted Photo-Activable Multi-Inhibitor Liposome
解决胰腺癌和卵巢癌的化疗耐药性:使用靶向光激活多抑制剂脂质体进行四环素的光动力启动和再利用
- 批准号:
10197327 - 财政年份:2021
- 资助金额:
$ 89.47万 - 项目类别:
High-Precision Non-Contact Plasmon-Induced Intracellular Delivery
高精度非接触式等离激元诱导细胞内递送
- 批准号:
10813943 - 财政年份:2021
- 资助金额:
$ 89.47万 - 项目类别:
Addressing Chemoresistance in Pancreatic and Ovarian Cancers: Photodynamic Priming and Repurposing of Tetracyclines using Targeted Photo-Activable Multi-Inhibitor Liposome
解决胰腺癌和卵巢癌的化疗耐药性:使用靶向光激活多抑制剂脂质体进行四环素的光动力启动和再利用
- 批准号:
10373082 - 财政年份:2021
- 资助金额:
$ 89.47万 - 项目类别: