Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
基本信息
- 批准号:EP/N015215/1
- 负责人:
- 金额:$ 375.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The exploitation of single atoms for Quantum Technologies (QT) is most advanced for single-atom and single-ion electromagnetic traps in vacuum. Dopants in solids provide a natural form of trapping, as the impurity is held in place by the electromagnetic fields of the host solid around it, but on a length scale orders of magnitude smaller. Some solids, such as silicon can be made with an astonishing purity of 1 part per 100,000,000,000. This is so pure that nano-scale devices can be expected to have zero unintentional impurities and, if the doping is carefully controlled, a device can be constructed with a single, solitary impurity atom opening up a wealth of possibilities for solid state QT. This brings new challenges in engineering the local environment, but they are ideal objects for robust, reproducable QT applications. Single dopants provide 'qubits' of quantum information for clocks, sensors and computation, and non- classical light sources for quantum key distribution systems, quantum repeaters, quantum lithography, multivalent logic and local sensing.The first electronic observation of a single impurity in a semiconductor was made in a MOSFET device cooled to about 30K - the single, naturally occurring, unidentified bistable impurity close to the conduction channel produced random telegraph noise. Single electron transistor channels now allow specific nearby dopants to be identified by their effect on the electrical characteristics. In some cases single impurities may be incorporated with nanometre precision using Scanning Tunnelling Microscope tips, but a much greater variety could, in principle, be achieved with ion implantation. Ion implantation is a microelectronic industry standard technique, and Surrey University houses the UK National Ion Beam Centre. Although implantation with a lateral accuracy of about 20 nm has been reported, it has only previously been possible with lithographically produced masks. This has already been used to create active devices that involve two phosphorus atoms in silicon close enough for their spins to exchange in a flip-flop interaction, but the functionality of this device was restricted by the limited accuracy of the implantation technique, and it has not been reproduced. A much more scalable, reproducible technology would be to use highly focused ion beams, but this requires a significant advancement in implantation tools. This proposal is to install the world's first single ion implantation tool with 20nm lateral beam focus, with the ability to implant any species from gas or solid source. The tool will serve the UK need for an open access user facility for academia and industry in QTs.Using this tool, we will enable implantation of single bismuth atoms in silicon, single nitrogen atoms in diamond, single erbium atoms in sapphire, and single manganese atoms in GaAs. Each of these exemplifies a different QT platform and covers applications from magnetometry to imaging, computation and single photon emission. We will characterize and image the single atom devices, either via collaboration with key partners (in the case of diamond NV) or in house (in the case of Bi in Si). In the case of the Si:Bi (and other silicon shallow impurities) we will install a world leading near-field imaging system using terahertz frequency light. This will take advantage of Surrey's strategic partnership with the National Physical Laboratory (NPL).
对量子技术(QT)的单原子的开发对于真空中的单原子和单离子电磁陷阱最先进。固体中的掺杂剂提供了一种自然的捕获形式,因为杂质通过周围的宿主固体的电磁场固定在适当的位置,但在长度尺度上,杂质较小。有些固体,例如硅可以以每1亿美元的惊人纯度为单位制成。这是如此纯净,以至于可以预期纳米尺度设备具有零无意的杂质,如果仔细控制了掺杂,则可以用单个孤立的杂质原子来构建设备,从而为固态QT提供了大量可能性。这带来了工程本地环境的新挑战,但它们是可重现QT应用程序的理想对象。 Single dopants provide 'qubits' of quantum information for clocks, sensors and computation, and non- classical light sources for quantum key distribution systems, quantum repeaters, quantum lithography, multivalent logic and local sensing.The first electronic observation of a single impurity in a semiconductor was made in a MOSFET device cooled to about 30K - the single, naturally occurring, unidentified bistable impurity close to the conduction channel产生了随机的电报噪声。单一电子晶体管通道现在允许特定的附近掺杂剂通过对电气特性的影响来识别它们。在某些情况下,可以使用扫描隧道显微镜尖端将单个杂质与纳米精度合并,但是原则上可以通过离子植入来实现更大的种类。离子植入是一种微电子行业标准技术,萨里大学(Surrey University)设有英国国家离子光束中心。尽管据报道植入横向准确性约为20 nm,但以前只有使用光刻产生的掩模才有可能。这已经用于创建活跃的设备,这些设备涉及硅的两个磷原子足够接近,以使其旋转以触发器的交互方式交换,但是该设备的功能受植入技术的精度有限的限制,并且尚未复制。一种更可扩展的,可再现的技术是使用高度集中的离子光束,但这需要在植入工具方面取得重大进步。该建议是安装世界上第一个具有20nm侧束焦点的单个离子植入工具,并具有将任何物种植入气体或固体源的能力。该工具将满足英国在QT中为学术界和行业提供开放访问用户设施的需求。使用此工具,我们将在硅中植入单个二晶型原子,钻石中的单氮原子,蓝宝石中的单个Erbium原子,以及GAAS中的单锰原子。这些都例证了一个不同的QT平台,并涵盖了从磁力测定到成像,计算和单个光子发射的应用。我们将通过与关键合作伙伴(如果是钻石NV)或内部(对于SI中的BI)进行合作来表征和映像单个原子设备。在SI:BI(和其他硅浅杂质)的情况下,我们将使用Terahertz频率光安装世界领先的近场成像系统。这将利用萨里与国家物理实验室(NPL)的战略伙伴关系。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical and electrical properties of alkaline-doped and As-alloyed amorphous selenium films
- DOI:10.1007/s10854-019-01386-x
- 发表时间:2019-09-01
- 期刊:
- 影响因子:2.8
- 作者:Gunes, O.;Koughia, C.;Kasap, S. O.
- 通讯作者:Kasap, S. O.
Single Ion Implantation of Bismuth
- DOI:10.1002/pssa.202000237
- 发表时间:2020-08-02
- 期刊:
- 影响因子:2
- 作者:Cassidy, Nathan;Blenkinsopp, Paul;Cox, David
- 通讯作者:Cox, David
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Curry其他文献
Richard Curry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Curry', 18)}}的其他基金
Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
- 批准号:
EP/X035093/1 - 财政年份:2023
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
- 批准号:
EP/V008188/1 - 财政年份:2021
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
- 批准号:
EP/V001914/1 - 财政年份:2021
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
- 批准号:
NE/T014792/1 - 财政年份:2020
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
- 批准号:
EP/T01914X/1 - 财政年份:2020
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
- 批准号:
EP/R025576/1 - 财政年份:2018
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/2 - 财政年份:2017
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/2 - 财政年份:2017
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/1 - 财政年份:2016
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/1 - 财政年份:2015
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
相似国自然基金
量子启发的复合语义视频实例检索技术研究
- 批准号:62372339
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
近代东北南满铁路沿线工业城市的建设和技术传播
- 批准号:52378030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
激光成丝超连续光谱及中红外少光学周期超快激光同步产生技术研究
- 批准号:62375154
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
空芯光纤增强拉曼分布式氢气传感技术研究
- 批准号:62305232
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高性能计算的指令级自适应睿频加速芯片关键技术研究
- 批准号:62374100
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Orbitrap Eclipse Tribrid Mass Spectrometer as a Regional Resource
Orbitrap Eclipse Tribrid 质谱仪作为区域资源
- 批准号:
10629013 - 财政年份:2023
- 资助金额:
$ 375.89万 - 项目类别:
Fluorescent nanoparticles to improve resections of microscopic pancreatic tumors
荧光纳米颗粒改善显微胰腺肿瘤的切除
- 批准号:
9556024 - 财政年份:2018
- 资助金额:
$ 375.89万 - 项目类别:
Quantum Technology Capital: Epitaxy Cluster Tool to Enable Next-Generation Quantum Dots for Quantum Technology Applications
量子技术资本:外延集群工具为量子技术应用提供下一代量子点
- 批准号:
EP/N01488X/1 - 财政年份:2016
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Quantum Technology Capital: An extensible simulation and test platform for quantum and quantum enabled technologies
量子技术资本:量子和量子技术的可扩展模拟和测试平台
- 批准号:
EP/N014995/1 - 财政年份:2016
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant
Quantum Technology Capital: UKQNtel - Bringing the Telecoms Industry to the UK Quantum Network
量子技术资本:UKQNtel - 将电信行业引入英国量子网络
- 批准号:
EP/N015207/1 - 财政年份:2016
- 资助金额:
$ 375.89万 - 项目类别:
Research Grant