Positivity problems at the boundary between combinatorics and analysis

组合学和分析之间边界的正性问题

基本信息

  • 批准号:
    EP/N025636/1
  • 负责人:
  • 金额:
    $ 106.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Combinatorics is the branch of mathematics concerned with counting finitestructures of various types (permutations, graphs, etc.); it has applications in computer science, statistical physics, molecular biology,and many other fields. Analysis, by contrast, is the branch of mathematics concerned with continuous variation (i.e. functions of real or complex numbers); it has applications in nearly all fields of science and engineering.The proposed research lies at the interface between combinatorics and analysis: it involves using combinatorial tools to study analytic problems, and vice versa. More specifically, the proposed research comprises three themes, all of which are aimed at exploring novel positivity propertiesthat arise at the interface between combinatorics and analysis.The first theme involves studying situations in which inverse powersof combinatorially important polynomials have Taylor expansions withpositive coefficients. The second theme involves studying situations in which certain matrices formed from sequences of combinatorially important polynomials have a property called "total positivity".The third theme involves studying situations in which certain powerseries formed from combinatorially important polynomials (for example,the counting polynomials of connected graphs) have positive coefficients.This latter property was discovered empirically by the PI in manysituations, but most of these have not yet been proven, and their deeper meaning remains to be elucidated.
组合学是数学的一个分支,涉及对各种类型的有限结构(排列、图等)进行计数;它在计算机科学、统计物理、分子生物学和许多其他领域都有应用。相比之下,分析是与连续变化(即实数或复数的函数)有关的数学分支;它在科学和工程的几乎所有领域都有应用。拟议的研究位于组合学和分析之间:它涉及使用组合工具研究分析问题,反之亦然。更具体地说,这项研究包括三个主题,所有主题都旨在探索组合学和分析之间的新的正性性质。第一个主题涉及组合重要的多项式的逆幂具有正系数的泰勒展开的情况。第二个主题是研究由组合重要多项式序列组成的某些矩阵具有“全正”性质的情形。第三个主题是研究由组合重要多项式(例如连通图的计数多项式)组成的某些幂序列具有正系数的情况。后一个性质在很多情况下都被PI经验性地发现了,但大多数这些性质还没有被证明,其更深层次的意义还有待阐明。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coefficientwise total positivity of some matrices defined by linear recurrences
一些由线性递推定义的矩阵的系数总正性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen X
  • 通讯作者:
    Chen X
Classical continued fractions for some multivariate polynomials generalizing the Genocchi and median Genocchi numbers
一些多元多项式的经典连分数,概括了 Genocchi 数和中 Genocchi 数
Total positivity of some polynomial matrices that enumerate labeled trees and forests II. Rooted labeled trees and partial functional digraphs
  • DOI:
    10.1016/j.aam.2024.102703
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Chen;A. Sokal
  • 通讯作者:
    X. Chen;A. Sokal
Duality and the universality class of the three-state Potts antiferromagnet on plane quadrangulations
平面四边形上三态Potts反铁磁体的对偶性和普适类
  • DOI:
    10.48550/arxiv.1712.07047
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lv J
  • 通讯作者:
    Lv J
Trees, Forests, and Total Positivity: I. $q$-Trees and $q$-Forests Matrices
  • DOI:
    10.37236/10465
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomack Gilmore
  • 通讯作者:
    Tomack Gilmore
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan David Sokal其他文献

Alan David Sokal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan David Sokal', 18)}}的其他基金

Warwick EPSRC Symposium in the Statistical Mechanics / Mathematics of Phase Transitions
沃里克 EPSRC 统计力学/相变数学研讨会
  • 批准号:
    EP/K015591/1
  • 财政年份:
    2013
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Research Grant

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
  • 批准号:
    EP/Y021983/1
  • 财政年份:
    2024
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Research Grant
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
  • 批准号:
    2349846
  • 财政年份:
    2024
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Standard Grant
New Techniques for Resolving Boundary Problems in Total Search
解决全搜索中边界问题的新技术
  • 批准号:
    EP/W014750/1
  • 财政年份:
    2023
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Research Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Standard Grant
Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
  • 批准号:
    2247096
  • 财政年份:
    2023
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Discovery Early Career Researcher Award
Geometric Boundary Value Problems in General Relativity
广义相对论中的几何边值问题
  • 批准号:
    2304966
  • 财政年份:
    2023
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Standard Grant
Free Boundary Problems for Aggregation Phenomena and other Partial Differential Equations
聚集现象和其他偏微分方程的自由边界问题
  • 批准号:
    2307342
  • 财政年份:
    2023
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Standard Grant
Dynamical analysis of foliated structure in free boundary problems
自由边界问题中叶状结构的动力学分析
  • 批准号:
    22KK0230
  • 财政年份:
    2023
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Mathematical Analysis of Fluid Free Boundary Problems
无流体边界问题的数学分析
  • 批准号:
    2153992
  • 财政年份:
    2022
  • 资助金额:
    $ 106.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了