ENHANCEMENT OF NONLINEAR ESTIMATION CAPABILITY OF MLAB
MLAB非线性估计能力的增强
基本信息
- 批准号:3493499
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-09-01 至 1994-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The heart of the MLAB modeling language is the facility for parameter
estimation in mathematical models by fitting to data. This computation is
performed using the Marquardt-Levenburg algorithm and is applicable to
nonlinear models subject to linear constraints. By the use of appropriate
weighting choices, the algorithm is capable of a variety of extensions,
including norms other than L2, iteratively reweighted least squares, and,
for special cases only, maximum likelihood estimation. The robustness of
the algorithm has been enhanced through the provision of automatically-
calculated symbolic partial derivatives, and by heuristic use of gradient
search.
Despite all these features, there are still many classes of estimation
problem that are beyond the current capability of MLAB. These include:
more general maximum likelihood estimation, stochastic estimation, and
estimation for partial differential equation-defined models. For each of
these classes, we have developed new strategies and intend to incorporate
them into MLAB. The present proposal deals with three particular aspects
of nonlinear estimation that we have identified for enhancement.
* generalization of the constraint facility to include nonlinear equality
and inequality constraints using Lagrange multiplier techniques.
* generalization of the facility for estimation of the confidence
intervals and joint confidence regions for parameters in nonlinear models
with active constraints.
* provision of alternative methods for function optimization that will
increase the robustness of parameter estimation for certain classes of
nonlinear models. In particular, simplex methods and simulated annealing
have been identified as suitable candidates.
For Phase I, we will identify a wide range of further extensions to be
developed for Phase II.
MLAB建模语言的核心是参数的便利
通过对数据进行拟合来估计数学模型中的值。这项计算是
使用马夸特-莱文伯格算法执行,并适用于
受线性约束的非线性模型。通过使用适当的
加权选择,该算法能够进行各种扩展,
包括L2以外的范数、迭代重新加权的最小二乘,以及,
仅对于特殊情况,最大似然估计。的健壮性
该算法已得到改进,因为提供了自动-
计算符号偏导数,并通过启发式使用梯度
搜索。
尽管有所有这些功能,但仍有许多类别的估计
超出MLAB当前能力范围的问题。这些措施包括:
更一般的最大似然估计、随机估计和
偏微分方程定义模型的估计。对于每一个
这些班级,我们已经制定了新的战略,并打算将
他们进入了MLAB。本提案涉及三个具体方面
我们已经确定了增强的非线性估计。
*将约束机制推广到包括非线性等式
和使用拉格朗日乘子技术的不等式约束。
*推广估计置信度的便利
非线性模型中参数的区间和联合置信域
具有激活的约束。
*为功能优化提供替代方法,以
提高某些类别的参数估计的稳健性
非线性模型。特别是单纯形法和模拟退火法
已被确定为合适的候选人。
对于第一阶段,我们将确定一系列进一步的扩展,包括
为第二阶段开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY J BUNOW其他文献
BARRY J BUNOW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY J BUNOW', 18)}}的其他基金
LABMAN--LAB ASSISTANT FOR BIOCHEMICAL CALCULATIONS
LABMAN--生化计算实验室助手
- 批准号:
2189186 - 财政年份:1994
- 资助金额:
$ 4.92万 - 项目类别:
MLAB ENHANCED FOR THE MACINTOSH WITH GRAPHICAL EXTENSION
MLAB 针对 Macintosh 进行了增强,具有图形扩展功能
- 批准号:
3493342 - 财政年份:1993
- 资助金额:
$ 4.92万 - 项目类别:
MLAB 3D GRAPHICS--SCIENTIFIC VISUALIZATION SOFTWARE
MLAB 3D GRAPHICS--科学可视化软件
- 批准号:
3492587 - 财政年份:1991
- 资助金额:
$ 4.92万 - 项目类别:
COMBO: PROGRAM FOR ANALYZING DRUG COMBINATION ASSAYS
COMBO:药物组合测定分析程序
- 批准号:
3492622 - 财政年份:1991
- 资助金额:
$ 4.92万 - 项目类别:
TI--PC SOFTWARE FOR ANALYZING LONGITUDINAL DATA
TI——用于分析纵向数据的PC软件
- 批准号:
3502073 - 财政年份:1991
- 资助金额:
$ 4.92万 - 项目类别:
相似海外基金
Calculation and the Verification of the maximum electric power of Microbial Fuel Cells by Minimizing the Internal Resistance Using the Mathematical Model
微生物燃料电池内阻最小化最大电功率的数学模型计算与验证
- 批准号:
23K11483 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advancement of mathematical model and visualization method for cognition of relation between micro and macro phenomena
认知微观与宏观现象关系的数学模型和可视化方法的进展
- 批准号:
23K11128 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction and analysis of a hybrid mathematical model describing the dynamics of bacterial cellular society
描述细菌细胞社会动态的混合数学模型的构建和分析
- 批准号:
23K03208 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Model-Based Optimization of CRT Response in Ischemia
基于数学模型的缺血 CRT 反应优化
- 批准号:
10734486 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Noncontact Measurement of Multiple Sites of Multiple People Using Array Radar Signal Processing Based on Mathematical Model of Body Displacement
基于人体位移数学模型的阵列雷达信号处理非接触多人多部位测量
- 批准号:
23H01420 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical model to simulate SARS-CoV-2 infection within-host
模拟宿主内 SARS-CoV-2 感染的数学模型
- 批准号:
EP/W007355/1 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Research Grant
A mathematical model of colloidal membrane vesicle formation
胶体膜囊泡形成的数学模型
- 批准号:
567961-2022 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Towards A Mathematical Model For Spacetimes With Multiple Histories
建立具有多重历史的时空数学模型
- 批准号:
577586-2022 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
University Undergraduate Student Research Awards
Mathematical model for quantitatively analysis the pathophysiological characteristics of mouse photoreceptor cell
定量分析小鼠感光细胞病理生理特征的数学模型
- 批准号:
22K20514 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Mathematical model of internal standard selection criteria for accurate quantitative analysis
精确定量分析内标选择标准的数学模型
- 批准号:
22K10604 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)