Computational methods for inverse problems subject to wave equations in heterogeneous media
异质介质中波动方程反问题的计算方法
基本信息
- 批准号:EP/V050400/1
- 负责人:
- 金额:$ 68.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are a very wide variety of applications where sound waves are used to provide information about physical processes, such approaches are known as Acoustic imaging. A well known example is ultrasound scans in medical science, where high-frequency sound waves captures live images from the inside of your body. Another important field of application is geoscience, where vibrations measured on the earths surface are used to extract information on structures or processes inside the earth, this is known as Seismic imaging. Important uses for such methods include warning systems for earthquakes or tsunamis and the identification of geological structures with the purpose of locating underground oil, gas, or other resources. All these imaging techniques rely on computational algorithms based on mathematics. To understand precisely how well an imaging method works in a certain situation one can apply a mathematical analysis. Different analyses can be applied on the one hand to the computational algorithm and on the other to the physical wave propagation itself, both with the purpose of seeing how accurately and efficiently an image is reconstructed from the acoustic data. To form a complete picture of the imaging process not only must these two aspects (computational and physical) be analysed separately, but the two analyses must be made to match so that the computational algorithm is optimised using the parameters set by the physical problems at hand. This is an ambitious programme that requires understanding both of the stability properties inherent to the physical and computational processes. The objective of the present project is to realise this goal in the context of seismic imaging. In particular we aim to understand how the accuracy of the imaging is influenced by the heterogeneous nature of the subsurface environment: the earth consists of different types of material intersected by fractures. The quantity that we wish to reconstruct is typically the source of the wave, that is what was the amplitude of and position of the initial vibration. This is a key data for the analysis of earthquakes. In that case, the source problem is further complicated by the fact that the seismic wave is initiated by a nonlinear process on the fault line. Often only the total energy of the source is computed. The promise of the proposed method is to recover refined information on the source by exploiting the fact that it is constrained by the friction law. It should be stressed, however, that the project does not aim to apply the planned method directly to practical geophysical imaging problems, rather the aim is to demonstrate the feasibility of the method, communicate the results to geophysicists, and get them to adopt the method. Throughout the project there will be a parallel development of mathematical analysis and computational methodology. The final aim is delivery of proof of concept computational software that returns, provably, the best imaging result possible from the point of view of accuracy.
声波被用来提供有关物理过程的信息的应用非常广泛,这种方法被称为声学成像。一个众所周知的例子是医学中的超声波扫描,即高频声波从你的身体内部捕捉实时图像。另一个重要的应用领域是地球科学,在地球表面测量的振动被用来提取关于地球内部结构或过程的信息,这被称为地震成像。这种方法的重要用途包括地震或海啸预警系统,以及识别地质结构,目的是定位地下石油、天然气或其他资源。所有这些成像技术都依赖于基于数学的计算算法。为了准确地了解成像方法在特定情况下的工作情况,可以应用数学分析。不同的分析一方面可以应用于计算算法,另一方面可以应用于物理波传播本身,目的都是为了查看从声学数据重建图像的精度和效率。为了形成成像过程的完整画面,不仅必须分别分析这两个方面(计算和物理),而且必须使这两个分析相匹配,以便使用手头的物理问题设置的参数来优化计算算法。这是一个雄心勃勃的计划,需要了解物理和计算过程所固有的稳定性属性。本项目的目标是在地震成像方面实现这一目标。特别是,我们的目标是了解地下环境的异质性如何影响成像的准确性:地球是由不同类型的材料组成的,这些材料被裂缝相交。我们希望重建的量通常是波源,也就是初始振动的幅度和位置。这是分析地震的关键数据。在这种情况下,由于地震波是由断层线上的非线性过程引发的,震源问题变得更加复杂。通常只计算震源的总能量。所提出的方法的前景是通过利用源受到摩擦定律约束的事实来恢复关于源的精细化信息。然而,应该强调的是,该项目的目的并不是将计划的方法直接应用于实际的地球物理成像问题,而是为了证明该方法的可行性,将结果传达给地球物理学家,并让他们采用该方法。在整个项目中,将并行开发数学分析和计算方法。最终目标是交付概念验证计算软件,该软件可以从精度的角度返回可能的最佳成像结果。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A primal dual mixed finite element method for inverse identification of the diffusion coefficient and its relation to the Kohn-Vogelius penalty method
- DOI:10.48550/arxiv.2304.10467
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:E. Burman
- 通讯作者:E. Burman
Coupling finite and boundary element methods to solve the Poisson--Boltzmann equation for electrostatics in molecular solvation
耦合有限元法和边界元法求解分子溶剂化静电场的泊松-玻尔兹曼方程
- DOI:10.48550/arxiv.2305.11886
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bosy M
- 通讯作者:Bosy M
Coupling finite and boundary element methods to solve the Poisson-Boltzmann equation for electrostatics in molecular solvation
- DOI:10.1002/jcc.27262
- 发表时间:2023-12-21
- 期刊:
- 影响因子:3
- 作者:Bosy,Michal;Scroggs,Matthew W.;Cooper,Christopher D.
- 通讯作者:Cooper,Christopher D.
Spacetime finite element methods for control problems subject to the wave equation
波动方程控制问题的时空有限元方法
- DOI:10.1051/cocv/2023028
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Burman E
- 通讯作者:Burman E
The Unique Continuation Problem for the Heat Equation Discretized with a High-Order Space-Time Nonconforming Method
- DOI:10.1137/22m1508637
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Erik Burman;G. Delay;Alexandre Ern
- 通讯作者:Erik Burman;G. Delay;Alexandre Ern
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Burman其他文献
Extension operators for trimmed spline spaces
修剪样条空间的扩展算子
- DOI:
10.1016/j.cma.2022.115707 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:7.300
- 作者:
Erik Burman;Peter Hansbo;Mats G. Larson;Karl Larsson - 通讯作者:
Karl Larsson
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization
基于不连续伽辽金时间离散化的波动方程的唯一延拓
- DOI:
10.48550/arxiv.2405.04615 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Erik Burman;Janosch Preuss - 通讯作者:
Janosch Preuss
A cut finite element method for elliptic bulk problems with embedded surfaces
- DOI:
10.1007/s13137-019-0120-z - 发表时间:
2019-01-29 - 期刊:
- 影响因子:1.000
- 作者:
Erik Burman;Peter Hansbo;Mats G. Larson;David Samvin - 通讯作者:
David Samvin
Hybridized augmented Lagrangian methods for contact problems
用于接触问题的混合增广拉格朗日方法
- DOI:
10.1016/j.cma.2025.118175 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:7.300
- 作者:
Erik Burman;Peter Hansbo;Mats G. Larson - 通讯作者:
Mats G. Larson
The Augmented Lagrangian Method as a Framework for Stabilised Methods in Computational Mechanics
- DOI:
10.1007/s11831-022-09878-6 - 发表时间:
2023-01-20 - 期刊:
- 影响因子:12.100
- 作者:
Erik Burman;Peter Hansbo;Mats G. Larson - 通讯作者:
Mats G. Larson
Erik Burman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Burman', 18)}}的其他基金
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 68.06万 - 项目类别:
Research Grant
Quantitative estimates of discretisation and modelling errors in variational data assimilation for incompressible flows
不可压缩流变分数据同化中离散化和建模误差的定量估计
- 批准号:
EP/T033126/1 - 财政年份:2021
- 资助金额:
$ 68.06万 - 项目类别:
Research Grant
Geometrically unfitted finite element methods for inverse identification of geometries and shape optimization
用于几何反演和形状优化的几何不拟合有限元方法
- 批准号:
EP/P01576X/1 - 财政年份:2017
- 资助金额:
$ 68.06万 - 项目类别:
Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
- 批准号:
EP/J002313/2 - 财政年份:2013
- 资助金额:
$ 68.06万 - 项目类别:
Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
- 批准号:
EP/J002313/1 - 财政年份:2012
- 资助金额:
$ 68.06万 - 项目类别:
Research Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Development of Adaptive and Efficient Computational Inverse Design Methods for Organic Functional Materials
职业:有机功能材料自适应高效计算逆向设计方法的开发
- 批准号:
2339804 - 财政年份:2023
- 资助金额:
$ 68.06万 - 项目类别:
Standard Grant
Computational Transient Imaging: Instrumentation, Image Formation Models, Inverse Methods, and Applications
计算瞬态成像:仪器、图像形成模型、反演方法和应用
- 批准号:
263273705 - 财政年份:2015
- 资助金额:
$ 68.06万 - 项目类别:
Research Grants
Inverse methods in computational modeling of welding processes
焊接过程计算建模中的逆向方法
- 批准号:
349293-2006 - 财政年份:2010
- 资助金额:
$ 68.06万 - 项目类别:
Collaborative Research and Development Grants
Inverse methods in computational modeling of welding processes
焊接过程计算建模中的逆向方法
- 批准号:
349293-2006 - 财政年份:2009
- 资助金额:
$ 68.06万 - 项目类别:
Collaborative Research and Development Grants
Inverse methods in computational modeling of welding processes
焊接过程计算建模中的逆向方法
- 批准号:
349293-2006 - 财政年份:2008
- 资助金额:
$ 68.06万 - 项目类别:
Collaborative Research and Development Grants
Foundation of high accuracy computational methods on the multiple-precision computer environment and its applications to analysi of inverse problems
多精度计算机环境下高精度计算方法的建立及其在反问题分析中的应用
- 批准号:
19340022 - 财政年份:2007
- 资助金额:
$ 68.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Inverse methods in computational modeling of welding processes
焊接过程计算建模中的逆向方法
- 批准号:
349293-2006 - 财政年份:2007
- 资助金额:
$ 68.06万 - 项目类别:
Collaborative Research and Development Grants
New variational computational methods for modeling dual spaces of distributions, decomposition of functions, oscillations, and inverse problems in image analysis
用于对图像分析中的分布双空间、函数分解、振荡和反演问题进行建模的新变分计算方法
- 批准号:
0714945 - 财政年份:2007
- 资助金额:
$ 68.06万 - 项目类别:
Continuing Grant
Numerical Analysis and Computational Geometry Research of Characteristic Finite Element Methods
特征有限元方法的数值分析与计算几何研究
- 批准号:
16540093 - 财政年份:2004
- 资助金额:
$ 68.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational Methods for the Solution of Three-Dimensiional Inverse Acoustic and Elastoacoustic Scattering Problems
求解三维逆声学和弹声散射问题的计算方法
- 批准号:
0406617 - 财政年份:2003
- 资助金额:
$ 68.06万 - 项目类别:
Standard Grant














{{item.name}}会员




