Computational methods for multiphysics interface problems

多物理场接口问题的计算方法

基本信息

  • 批准号:
    EP/J002313/2
  • 负责人:
  • 金额:
    $ 47.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Many problems in science and technology includes a fixed or moving boundary over whichtwo different physical systems are coupled. This situation is particularly common in systems inmedicine and biology, for instance: in the human arteries the fluid dynamics of the blood couples to the solid dynamics of the arterial wall, in rivers and estuaries the free flow couples to the porous media flow in the infiltrated river bed. Making accurate computational predictions of the evolution of such systems remains an important challenge for engineers and the accurate mathematical analysis of the associated methods is even more daunting. Indeed no known methods allow for rigorous mathematical analysis and many suffer from problems of stability or accuracy depending on the orientation of the interface. Numerical computations are most often performed on a computational mesh, that is a decomposition of the computational domain in a large number of small building blocks, so called elements. An important feature of the methods that we propose is that the interface may cut through the elements of the computational mesh, or in other words, the computational mesh does not need to fit the interface.In multiphysics problems the situation is often complicated by the fact that the computational mesh may not be adapted to fit the interface, but the coupling of the two systems must take place independent of the mesh. This is the type of situation that we aim to study in the present project. New approaches will be designed for multiphysics couplings over moving interfaces. The mathematical methods will be designed so as to be robust and accurate and we will also explore the possibility to decouple the two systems for efficient time advancement. This may lead to very important savings in computational time, in particular for nonlinear problems.Three important model cases will be considered: the coupling of two fluids of which one or both may be viscoelastic, the coupling of free flow and porous media flow and finally the coupling of a fluid and an elastic structure. All of these applications have important applications in the modeling of the human cardiovascular system, but also in a wide variety of other applications such as ink-jet printers, environmental science, chemical industry and so on.
科学技术中的许多问题都包含一个固定或移动的边界,在这个边界上,两个不同的物理系统相互耦合。这种情况在医学和生物学系统中特别常见,例如:在人体动脉中,血液的流体动力学耦合到动脉壁的固体动力学,在河流和河口中,自由流动耦合到渗透河床中的多孔介质流动。对这些系统的演化进行精确的计算预测仍然是工程师面临的一个重要挑战,而对相关方法进行精确的数学分析更是令人生畏。实际上,没有已知的方法允许严格的数学分析,并且许多方法遭受取决于界面取向的稳定性或准确性的问题。数值计算最常在计算网格上执行,计算网格是将计算域分解为大量小构建块,即所谓的元素。我们提出的方法的一个重要特点是,接口可以通过计算网格的元素,或者换句话说,计算网格不需要适合接口。在多物理场问题的情况往往是复杂的事实,计算网格可能不适合接口,但两个系统的耦合必须发生独立的网格。这就是我们在本项目中要研究的情况。新的方法将被设计用于移动界面上的多物理场耦合。数学方法将被设计为具有鲁棒性和准确性,我们还将探索将两个系统解耦以实现有效时间推进的可能性。这可能会导致非常重要的节省计算时间,特别是对于非线性problems.Three重要的模型的情况下,将被认为是:耦合的两种流体,其中一个或两个可能是粘弹性的,耦合的自由流动和多孔介质流,最后耦合的流体和弹性结构。所有这些应用都在人体心血管系统建模中有重要的应用,但也在各种各样的其他应用中,如喷墨打印机,环境科学,化学工业等。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical Mathematics and Advanced Applications ENUMATH 2017
数值数学与高级应用 ENUMATH 2017
  • DOI:
    10.1007/978-3-319-96415-7_14
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burman E
  • 通讯作者:
    Burman E
A stabilized cut finite element method for partial differential equations on surfaces: The Laplace-Beltrami operator
曲面上偏微分方程的稳定切割有限元方法:Laplace-Beltrami 算子
  • DOI:
    10.48550/arxiv.1312.1097
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burman E
  • 通讯作者:
    Burman E
Stabilized CutFEM for the convection problem on surfaces
针对表面对流问题的稳定 CutFEM
  • DOI:
    10.1007/s00211-018-0989-8
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Burman E
  • 通讯作者:
    Burman E
Penalty-free Nitsche method for interface problems in computational mechanics
计算力学中界面问题的无惩罚 Nitsche 方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boiveau T. B. V.
  • 通讯作者:
    Boiveau T. B. V.
A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity
  • DOI:
    10.1093/imanum/drv042
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Thomas Boiveau;E. Burman
  • 通讯作者:
    Thomas Boiveau;E. Burman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Burman其他文献

Extension operators for trimmed spline spaces
修剪样条空间的扩展算子
Unique continuation for the wave equation based on a discontinuous Galerkin time discretization
基于不连续伽辽金时间离散化的波动方程的唯一延拓
  • DOI:
    10.48550/arxiv.2405.04615
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Burman;Janosch Preuss
  • 通讯作者:
    Janosch Preuss
A cut finite element method for elliptic bulk problems with embedded surfaces
  • DOI:
    10.1007/s13137-019-0120-z
  • 发表时间:
    2019-01-29
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Erik Burman;Peter Hansbo;Mats G. Larson;David Samvin
  • 通讯作者:
    David Samvin
Hybridized augmented Lagrangian methods for contact problems
用于接触问题的混合增广拉格朗日方法
The Augmented Lagrangian Method as a Framework for Stabilised Methods in Computational Mechanics

Erik Burman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Burman', 18)}}的其他基金

Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
  • 批准号:
    EP/X042650/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Research Grant
Quantitative estimates of discretisation and modelling errors in variational data assimilation for incompressible flows
不可压缩流变分数据同化中离散化和建模误差的定量估计
  • 批准号:
    EP/T033126/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Research Grant
Computational methods for inverse problems subject to wave equations in heterogeneous media
异质介质中波动方程反问题的计算方法
  • 批准号:
    EP/V050400/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Research Grant
Geometrically unfitted finite element methods for inverse identification of geometries and shape optimization
用于几何反演和形状优化的几何不拟合有限元方法
  • 批准号:
    EP/P01576X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Research Grant
Computational methods for multiphysics interface problems
多物理场接口问题的计算方法
  • 批准号:
    EP/J002313/1
  • 财政年份:
    2012
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Research Grant

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Standard Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
  • 批准号:
    2238124
  • 财政年份:
    2023
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Continuing Grant
Research and Development of Numerical Methods of Multiphysics and Multiscale Modeling for Emerging Technology Applications and Designs
新兴技术应用和设计的多物理场和多尺度建模数值方法的研究和开发
  • 批准号:
    RGPIN-2018-05364
  • 财政年份:
    2022
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: Collaborative Research: Scalable and Topologically Versatile Material Point Methods for Complex Materials in Multiphysics Simulation
AF:小型:协作研究:多物理场仿真中复杂材料的可扩展且拓扑通用的质点方法
  • 批准号:
    2153863
  • 财政年份:
    2021
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Standard Grant
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
  • 批准号:
    RGPIN-2017-04152
  • 财政年份:
    2021
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Discovery Grants Program - Individual
Research and Development of Numerical Methods of Multiphysics and Multiscale Modeling for Emerging Technology Applications and Designs
新兴技术应用和设计的多物理场和多尺度建模数值方法的研究和开发
  • 批准号:
    RGPIN-2018-05364
  • 财政年份:
    2021
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Discovery Grants Program - Individual
Research and Development of Numerical Methods of Multiphysics and Multiscale Modeling for Emerging Technology Applications and Designs
新兴技术应用和设计的多物理场和多尺度建模数值方法的研究和开发
  • 批准号:
    RGPIN-2018-05364
  • 财政年份:
    2020
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Discovery Grants Program - Individual
New Advanced Time Integration Methods for Multiphysics Systems and Applications
多物理场系统和应用的新型高级时间积分方法
  • 批准号:
    2012022
  • 财政年份:
    2020
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Continuing Grant
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
  • 批准号:
    RGPIN-2017-04152
  • 财政年份:
    2020
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Discovery Grants Program - Individual
Fast numerical methods for large-scale multiphysics problems
大规模多物理场问题的快速数值方法
  • 批准号:
    RGPIN-2017-04152
  • 财政年份:
    2019
  • 资助金额:
    $ 47.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了