Temperature in laser compressed high pressure solids: measurement and control
激光压缩高压固体中的温度:测量和控制
基本信息
- 批准号:EP/P024777/1
- 负责人:
- 金额:$ 8.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High pressure material (by which we mean here solid matter at pressures exceeding one megabar) exhibits a range of interesting features. Solids in such states display remarkable structural and electronic complexity due to unusual chemical response at these extreme densities of mechanical energy. This can lead to the production of materials with novel and potentially valuable properties such as extreme mechanical properties, or unusual electronic structure. This high pressure material is also a major constituent of the majority of planetary interiors, and as such is widely found within the universe. Moreover, some of these unusual high pressure structures are predicted to be stable on release back to ambient conditions, which may allow for them to be recovered for further study and application in the laboratory. As such, there is a growing interest from a range of scientific disciplines in the generation and diagnosis of solid material at ever increasing pressure. The challenge of creating such conditions in the laboratory is of course considerable. One successful route to high pressure is via transient compression via laser irradiation of samples, where pressures in excess of 10 Mbar have been attained in solids. However, there remain challenges in diagnosing the material produced in these experiments. The development of pulsed x-ray diffraction has allowed for the in-situ determination of density and structure, and thus greatly increased our diagnostic capabilities. This proposal aims to expand the utility of these existing, and highly successful diffraction diagnostics to allow for the determination of material temperature, by far the most poorly constrained fundamental thermodynamic quantity in experiments.Specifically, this work will aim to investigate the modification of x-ray diffraction signals due to thermal disorder (the Debye-Waller effect) and to theoretically and experimentally develop methods to exploit this in the complex environment of a highly deformed solid. This approach is entirely compatible with current uses of x-ray diffraction, meaning it can be exploited on existing experimental platforms at various international facilities. This will bring a significant new capability to a rapidly expanding community. Specifically, in order to access the novel high pressure states referenced above, one must often drive the material through a carefully chosen path in pressure-temperature space. This process requires control of the material's behaviour during compression, and therefore, the ability to perform time-dependent measurement of the material's state en-route to the target conditions. The work proposed will enable this by providing the means to confirm the temperature track of the material during deformation. This will allow us, for the first time, to repeatably and accurately target states of specific interest via dynamic compression. As part of the development and testing of this in-situ temperature diagnostic, we will also investigate the response of a novel target type which aims to access novel pressure-temperature states by significantly altering the nature of sample response to compression. These targets are potentially simple to manufacture in large quantities at low cost, which would make them ideal for implementation at next generation, high repetition rate facilities such as x-ray free electron lasers. The design and response of these targets will be refined by a combination of computational and experimental approaches, and their utility for high pressure science applications will be assessed. This work will consist of an experimental campaign at the UK's Orion laser, as well as other leading international facilities. In addition, theoretical and computational studies of the Debye-Waller approach to temperature measurement, and the design and implementation of novel targets will be conducted.
高压物质(我们这里指的是压力超过1兆巴的固体物质)表现出一系列有趣的特征。在这种状态下的固体显示出显着的结构和电子复杂性,由于不寻常的化学反应,在这些极端密度的机械能。这可以导致生产具有新的和潜在的有价值的特性的材料,例如极端的机械性能或不寻常的电子结构。这种高压物质也是大多数行星内部的主要成分,因此在宇宙中广泛存在。此外,预计这些不寻常的高压结构中的一些在释放回环境条件时是稳定的,这可能允许它们被回收用于实验室中的进一步研究和应用。因此,一系列科学学科对在不断增加的压力下产生和诊断固体材料越来越感兴趣。当然,在实验室中创造这样的条件是相当大的挑战。一种成功的高压途径是通过激光照射样品的瞬时压缩,其中固体中的压力超过10 Mbar。然而,在诊断这些实验中产生的材料方面仍然存在挑战。脉冲X射线衍射的发展允许原位测定密度和结构,从而大大提高了我们的诊断能力。该建议旨在扩展这些现有的非常成功的衍射诊断的实用性,以允许确定材料温度,到目前为止,材料温度是实验中约束最差的基本热力学量。本工作的目的是研究由于热无序引起的x射线衍射信号的改变。(德拜-沃勒效应),并从理论和实验上开发在高度变形固体的复杂环境中利用这一点的方法。这种方法与X射线衍射的当前用途完全兼容,这意味着它可以在各种国际设施的现有实验平台上利用。这将为快速扩展的社区带来重要的新能力。具体地说,为了达到上述新的高压状态,人们必须经常驱动材料通过压力-温度空间中精心选择的路径。这个过程需要控制材料在压缩过程中的行为,因此,能够在到达目标条件的途中对材料的状态进行时间相关的测量。所提出的工作将通过提供确认材料在变形过程中的温度轨迹的方法来实现这一点。这将使我们第一次能够通过动态压缩重复和准确地瞄准特定感兴趣的状态。作为这种原位温度诊断的开发和测试的一部分,我们还将研究一种新型目标类型的响应,该目标类型旨在通过显着改变样品对压缩的响应性质来获得新的压力-温度状态。这些目标是潜在的简单,以低成本大量制造,这将使他们理想的实现在下一代,高重复率的设施,如x射线自由电子激光器。这些目标的设计和响应将通过计算和实验方法的结合进行改进,并将评估它们在高压科学应用中的效用。这项工作将包括在英国猎户座激光器以及其他领先的国际设施的实验活动。此外,Debye-Waller温度测量方法的理论和计算研究,以及新目标的设计和实现将进行。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Femtosecond quantification of void evolution during rapid material failure.
快速量化在快速材料失败期间空隙演化的定量。
- DOI:10.1126/sciadv.abb4434
- 发表时间:2020-12
- 期刊:
- 影响因子:13.6
- 作者:Coakley J;Higginbotham A;McGonegle D;Ilavsky J;Swinburne TD;Wark JS;Rahman KM;Vorontsov VA;Dye D;Lane TJ;Boutet S;Koglin J;Robinson J;Milathianaki D
- 通讯作者:Milathianaki D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Higginbotham其他文献
Andrew Higginbotham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Higginbotham', 18)}}的其他基金
Exploiting the European XFEL for a New Generation of High Energy Density and Materials Science
利用欧洲 XFEL 实现新一代高能量密度和材料科学
- 批准号:
EP/S023585/1 - 财政年份:2019
- 资助金额:
$ 8.68万 - 项目类别:
Research Grant
相似国自然基金
基于激光与管电极电解同步复合(Laser-STEM)的低损伤大深度小孔加工技术基础研究
- 批准号:51905525
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
长链非编码RNA lnc-LASER通过HNF-1α-PCSK9 调控肝脏胆固醇平衡的机制研究
- 批准号:81600343
- 批准年份:2016
- 资助金额:17.5 万元
- 项目类别:青年科学基金项目
基于康普顿散射的高精度束流截面测量方法的研究
- 批准号:11175196
- 批准年份:2011
- 资助金额:72.0 万元
- 项目类别:面上项目
全固态钠黄光激光器波长调控与锁定技术研究
- 批准号:60508013
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
化石硅藻微构造与古环境和古气候研究
- 批准号:40442004
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
System for 3D femtosecond laser-based micromachining
基于飞秒激光的 3D 微加工系统
- 批准号:
537273289 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Major Research Instrumentation
High-power Ytterbium femtosecond laser amplifier system
高功率镱飞秒激光放大器系统
- 批准号:
532577495 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Major Research Instrumentation
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
- 批准号:
MR/X034615/1 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Fellowship
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
- 批准号:
2338951 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Standard Grant
I-Corps: Translation potential of 3D electronics manufacturing by integrated 3D printing and freeform laser induction
I-Corps:通过集成 3D 打印和自由形式激光感应实现 3D 电子制造的转化潜力
- 批准号:
2412186 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Standard Grant
Microscale radiography of hydrodynamic instabilities mitigation in magnetized high-density laser plasmas
磁化高密度激光等离子体中流体动力学不稳定性缓解的微尺度射线照相
- 批准号:
24K06988 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
- 批准号:
2339487 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Continuing Grant
EAGER: IMPRESS-U: Gradient surface nanostructuring with short laser pulses
EAGER:IMPRESS-U:使用短激光脉冲进行梯度表面纳米结构
- 批准号:
2406599 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Standard Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2411394 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Standard Grant
Vision Servoing Based Micro Continuum Robot Actuated by SMA Wires for Precise Laser Irradiation during Transurethral Lithotripsy
基于视觉伺服的微型连续体机器人由 SMA 线驱动,用于经尿道碎石术期间的精确激光照射
- 批准号:
24K21116 - 财政年份:2024
- 资助金额:
$ 8.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




