Photonic integration of 2D materials for room temperature single photon generation

用于室温单光子生成的二维材料的光子集成

基本信息

  • 批准号:
    EP/P026656/1
  • 负责人:
  • 金额:
    $ 12.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Modern society is built upon our ability to communicate sensitive information securely, which is protected through cryptographic methods that rely on the inability of even the most powerful supercomputers to solve certain mathematical problems. However, with the advent of quantum computing it is only a matter of time before this security is breached. It is fortunate that quantum technology can also guarantee secure communication, where Quantum Key Distribution (QKD) employs the fragile nature of quantum states to detect any breach of security. QKD is a mature technology with commercial systems currently reaching the market for the most critical of applications, such as national security and high value financial transactions. With the ever-increasing reliance on mobile technology and the growing threat to conventional cryptography it is vital that solutions compatible with handheld devices are developed. This is currently limited by the availability of suitable single photon sources, which we aim to address in this project through the development of chip integrated quantum light sources built from two-dimensional (2D) materials.So called 2D materials, those with a thickness of just a few atomic monolayers, have great potential in this area. The first to be discovered was graphene, an isolated single layer of carbon atoms, first produced in a laboratory in 2004. Remarkably, the first graphene samples were isolated using sticky tape to peel away atomic layers from graphite, which is not dissimilar to the "lead" found in ordinary pencils. As a result, graphene samples can be produced easily and cheaply, allowing scientists to make rapid progress in the understanding of physical processes and unlock the potential for applications. This success with graphene has inspired scientists to look for other atomically thin materials, with considerable success and an ever-expanding list of stable 2D crystals. Unlike graphene, several of these emit visible light making them great contenders for next-generation optoelectronic devices. Very recently, with the discovery of single photon emitters reported in monolayers of transition metal dichalcogenides and boron nitride, this potential has been expanded to quantum photonic applications. In particular, atomic-scale defects in boron nitride have been shown to emit single photons at room temperature, which puts 2D materials amongst a very small number of room temperature quantum emitters. Early experiments indicate that high brightness and stable emission could mean boron nitride is unmatched as a system for room temperature quantum photonics. In this work we seek to take full advantage of this potential and will investigate the physical processes and atomic structure underpinning the quantum emission, methods of fabrication and photonic control of the emission. Ultimately, the aim will be to realise a platform consisting of defect emitters coupled to photonic circuits. Photonic integrated circuits enable the control and manipulation of light at the chip-scale and can benefit from the same economies of scale that have driven the microelectronics industry; namely that lithographic techniques can be employed to compress a large number of components into a very small volume to realise complex and efficient functionality. Development of integrated photonics is being driven by the huge power demands of data centres, which are increasingly using optical interconnects and the direct integration of photonics with CMOS electronics. Such photonic integrated circuits are important for the inclusion of quantum photonic devices within mobile devices because of the obvious size and weight constraints. The goal of this project will be to bring together quantum emitters in 2D materials with integrated photonics to provide a room temperature and portable solution for quantum secure communication.
现代社会是建立在我们安全地传递敏感信息的能力之上的,这些信息通过加密方法得到保护,这些方法依赖于即使是最强大的超级计算机也无法解决某些数学问题。然而,随着量子计算的出现,这种安全性被突破只是时间问题。幸运的是,量子技术还可以保证安全通信,量子密钥分发(QKD)利用量子态的脆弱性来检测任何安全漏洞。QKD是一项成熟的技术,商业系统目前已进入市场,用于最关键的应用,如国家安全和高价值金融交易。随着对移动的技术的日益依赖和对传统密码学的日益威胁,开发与手持设备兼容的解决方案至关重要。目前,这受到了合适的单光子源的限制,我们的目标是通过开发由二维(2D)材料构建的芯片集成量子光源来解决这一问题。所谓的2D材料,即厚度仅为几个原子单层的材料,在这一领域具有巨大的潜力。第一个被发现的是石墨烯,一种孤立的单层碳原子,于2004年首次在实验室中生产。值得注意的是,第一批石墨烯样品是用胶带从石墨上剥离原子层分离出来的,这与普通铅笔中的“铅”没有什么不同。因此,石墨烯样品可以轻松、廉价地生产,使科学家能够在物理过程的理解方面取得快速进展,并释放应用潜力。石墨烯的成功激发了科学家们寻找其他原子级薄材料,取得了相当大的成功,稳定的2D晶体名单不断扩大。与石墨烯不同的是,其中几种能发射可见光,使它们成为下一代光电器件的有力竞争者。最近,随着在过渡金属二硫属化物和氮化硼的单层中报道的单光子发射器的发现,这种潜力已经扩展到量子光子应用。特别是,氮化硼中的原子级缺陷已被证明在室温下发射单光子,这使得2D材料成为极少数的室温量子发射体。早期的实验表明,高亮度和稳定的发射可能意味着氮化硼作为室温量子光子学系统是无与伦比的。在这项工作中,我们试图充分利用这种潜力,并将研究支撑量子发射的物理过程和原子结构,制造方法和发射的光子控制。最终,目标将是实现一个由耦合到光子电路的缺陷发射器组成的平台。光子集成电路能够在芯片级控制和操纵光,并且可以受益于驱动微电子工业的相同规模经济;即光刻技术可以用于将大量组件压缩到非常小的体积中,以实现复杂和有效的功能。数据中心的巨大电力需求正在推动集成光子学的发展,这些数据中心越来越多地使用光学互连以及光子学与CMOS电子器件的直接集成。由于明显的尺寸和重量限制,这种光子集成电路对于在移动的设备内包括量子光子设备是重要的。该项目的目标是将2D材料中的量子发射器与集成光子学结合在一起,为量子安全通信提供室温和便携式解决方案。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stimulated Emission Depletion Spectroscopy of Color Centers in Hexagonal Boron Nitride.
  • DOI:
    10.1021/acsphotonics.0c01917
  • 发表时间:
    2021-04-21
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Malein RNE;Khatri P;Ramsay AJ;Luxmoore IJ
  • 通讯作者:
    Luxmoore IJ
Phonon sidebands of color centers in hexagonal boron nitride
  • DOI:
    10.1103/physrevb.100.125305
  • 发表时间:
    2019-09-16
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Khatri, P.;Luxmoore, I. J.;Ramsay, A. J.
  • 通讯作者:
    Ramsay, A. J.
Graphene-based Metamaterial Tunable Phase Modulator for Mid-Infrared Wave Steering
用于中红外波控制的石墨烯超材料可调谐相位调制器
  • DOI:
    10.1364/cleo_at.2019.jth2a.26
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shi C
  • 通讯作者:
    Shi C
Metamaterial-based graphene thermal emitter
  • DOI:
    10.1007/s12274-017-1922-7
  • 发表时间:
    2018-07-01
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Shi, Cheng;Mahlmeister, Nathan H.;Nash, Geoffrey R.
  • 通讯作者:
    Nash, Geoffrey R.
Phonon interaction of colour centres in hexagonal boron nitride
六方氮化硼色心的声子相互作用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khatri, P
  • 通讯作者:
    Khatri, P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Isaac Luxmoore其他文献

Isaac Luxmoore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329192
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329190
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329191
  • 财政年份:
    2023
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Standard Grant
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2022
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Discovery Grants Program - Individual
2D- and Nano-materials techniques for semiconductor integration
用于半导体集成的 2D 和纳米材料技术
  • 批准号:
    RGPIN-2020-04747
  • 财政年份:
    2022
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2021
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Discovery Grants Program - Individual
2D- and Nano-materials techniques for semiconductor integration
用于半导体集成的 2D 和纳米材料技术
  • 批准号:
    RGPIN-2020-04747
  • 财政年份:
    2021
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Discovery Grants Program - Individual
2D- and Nano-materials techniques for semiconductor integration
用于半导体集成的 2D 和纳米材料技术
  • 批准号:
    RGPIN-2020-04747
  • 财政年份:
    2020
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Discovery Grants Program - Individual
hBN/Graphene 2D Heterostructures: from scalable growth to integration
hBN/石墨烯二维异质结构:从可扩展增长到集成
  • 批准号:
    436545422
  • 财政年份:
    2020
  • 资助金额:
    $ 12.78万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了