Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
基本信息
- 批准号:2329191
- 负责人:
- 金额:$ 44.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical:Electronic integration has proven foundational to modern information society. Specifically, the up-scaling in semiconductor industry is one of the most critical steps towards reduced production cost, enhanced performance, and integration density. In this project, a potential transformative technique for developing next-generation semiconductor computing processor is proposed. By prototyping novel integrated electronic devices based on two-dimensional (2D) semiconductors with atomic thickness, ultrathin microelectronic logic element is studied, leading to not only fundamental physics advancements in low-dimensional materials community, but also major advances in semiconductor technologies synergizing vital research areas of materials, electronic devices, and novel circuity architecture. College students will be trained and involved for workforce upgrade and knowledge dissemination. Workshops, symposiums, and tutorials are planned, as well as technical exchange at international conferences to enhance the impact and findings of this project. Collaborations and technical discussions are also planned with semiconductor companies to foster technological translation workforce alignment.Technical:An interdisciplinary study on the three-dimensional (3D) integration of complementary-field effect transistors (C-FET) made by 2D material is proposed for the ultimate solution for the next-generation computing processors. Despite the recent advancement using multi-dimensional gate control technology, the current material and device architectures still encounter fundamental limitation on integration density and multifunctionality. A groundbreaking paradigm leap synergizing the material- and device- and circuit- level has thus attracted enormous interest from both academia and industry. Three significant breakthroughs will be made: (i) Single-crystalline 2D materials have atomic thickness and self-confine nature, it maintains excellent electrical property even under sub-nanometer scale, securing ultimate scalability. (ii) C-FETs are based on the concept of 3D heterogeneous integration of CMOS devices, allowing aggressive cell scaling to realize compact logic circuity. (iii) C-FET based monolithic 3D integration with image sensors will be achieved to explore the possibility of various integration capability based on the C-FET-based circuits. Four objectives will be implemented to promote the suggested breakthroughs: (1) Using the geometrically confined growth method that has recently proven groundbreaking success, high-quality single-crystal 2D materials can be manufactured at large-scale with high yield. (2) Single-crystalline 2D material-based C-FETs will be fabricated with competitive state-of-the-art performance. (3) Enabled with such C-FETs, circuit design of logic cells can be implemented including a full adder and a full substractor. (4) Ultimately, a novel encoder can be realized leveraging this new type of microprocessor, which is a main component of analog-to-digital converters (ADC). Through this, M3D integration with image sensors will be demonstrated to explore integration possibility of the C-FETs circuits. The next-generation computing processor proposed in this project will provide detailed understanding on how to demonstrate high-quality 2D materials, C-FETs, and C-FET based circuits that are key to maximizing their full potential, ultimate scalability and gate-controllability, for semiconductor technologies and industries. The successful achievement of these objectives will pave a new avenue for the next-generation computing processor that can meet the computational demands in the era of data explosion with less power consumption, leading to a considerable surge of interest in the science and application of 2D semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术:电子集成已被证明是现代信息社会的基础。具体地说,半导体行业的规模扩大是降低生产成本、提高性能和集成密度的最关键步骤之一。在本项目中,提出了一种开发下一代半导体计算处理器的潜在变革性技术。通过制作基于具有原子厚度的二维(2D)半导体的新型集成电子器件的原型,研究超薄微电子逻辑元件,不仅导致了低维材料领域的基本物理进展,而且在半导体技术方面取得了重大进展,这些技术结合了材料、电子器件和新型电路结构等重要研究领域。大学生将接受培训,参与劳动力升级和知识传播。计划举办讲习班、专题讨论会和教程,并在国际会议上进行技术交流,以加强该项目的影响和成果。还计划与半导体公司进行合作和技术讨论,以促进技术翻译人员的调整。技术:提出了一项关于由2D材料制造的补充场效应晶体管(C-FET)的三维(3D)集成的跨学科研究,以作为下一代计算处理器的最终解决方案。尽管多维栅极控制技术最近取得了进展,但当前的材料和器件结构在集成密度和多功能性方面仍然面临着根本的限制。因此,材料、器件和电路层面的突破性范式飞跃吸引了学术界和工业界的巨大兴趣。将取得三项重大突破:(I)单晶2D材料具有原子厚度和自限性质,即使在亚纳米尺度下也保持优异的电学性能,确保最终的可扩展性。(Ii)C-FET基于CMOS器件的3D异质集成的概念,允许积极的单元扩展以实现紧凑的逻辑电路。(Iii)将实现基于C-FET的单片3D与图像传感器的集成,以探索基于C-FET的电路的各种集成能力的可能性。将实施四个目标来促进建议的突破:(1)使用最近被证明取得突破性成功的几何限制生长方法,可以大规模、高成品率地制造高质量的单晶2D材料。(2)基于2D材料的单晶C-FET将被制造出具有竞争力的最先进性能。(3)利用这种C-FET,可以实现逻辑单元的电路设计,包括全加法器和全减法器。(4)最终,利用这种新型微处理器可以实现一种新型的编码器,它是模数转换器(ADC)的主要部件。通过此,将演示M3D与图像传感器的集成,以探索C-FETS电路的集成可能性。本项目中提出的下一代计算处理器将详细了解如何展示高质量的2D材料、C-FET和基于C-FET的电路,这些电路对于半导体技术和行业最大限度地发挥其全部潜力、最终的可扩展性和栅极可控性至关重要。这些目标的成功实现将为下一代计算处理器铺平一条新的道路,这种处理器能够以更低的功耗满足数据爆炸时代的计算需求,导致人们对2D半导体的科学和应用产生相当大的兴趣。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deji Akinwande其他文献
Graphene and two-dimensional materials for silicon technology
用于硅技术的石墨烯和二维材料
- DOI:
10.1038/s41586-019-1573-9 - 发表时间:
2019-09-25 - 期刊:
- 影响因子:48.500
- 作者:
Deji Akinwande;Cedric Huyghebaert;Ching-Hua Wang;Martha I. Serna;Stijn Goossens;Lain-Jong Li;H.-S. Philip Wong;Frank H. L. Koppens - 通讯作者:
Frank H. L. Koppens
Wearable graphene sensors use ambient light to monitor health
可穿戴石墨烯传感器利用环境光来监测健康状况
- DOI:
10.1038/d41586-019-03483-7 - 发表时间:
2019-11-18 - 期刊:
- 影响因子:48.500
- 作者:
Deji Akinwande;Dmitry Kireev - 通讯作者:
Dmitry Kireev
On-chip atomristors
片上原子电阻器
- DOI:
10.1016/j.mser.2025.101006 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:26.800
- 作者:
Yue Yuan;Sebastian Pazos;Junzhu Li;Bo Tian;Osamah Alharbi;Xixiang Zhang;Deji Akinwande;Mario Lanza - 通讯作者:
Mario Lanza
3D integrated monolayer graphene–Si CMOS RF gas sensor platform
3D 集成单层石墨烯-Si CMOS 射频气体传感器平台
- DOI:
10.1038/s41699-017-0036-0 - 发表时间:
2017-10-26 - 期刊:
- 影响因子:8.800
- 作者:
Seyedeh Maryam Mortazavi Zanjani;Milo Holt;Mir Mohammad Sadeghi;Somayyeh Rahimi;Deji Akinwande - 通讯作者:
Deji Akinwande
Signatures of bright-to-dark exciton conversion in corrugated MoS<sub>2</sub> monolayers
- DOI:
10.1016/j.apsusc.2022.154078 - 发表时间:
2022-10-30 - 期刊:
- 影响因子:
- 作者:
Maciej Wiesner;Richard H. Roberts;Ruijing Ge;Lukas Mennel;Thomas Mueller;Jung-Fu Lin;Deji Akinwande;Jacek Jenczyk - 通讯作者:
Jacek Jenczyk
Deji Akinwande的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deji Akinwande', 18)}}的其他基金
EAGER: PAN-VARIANT COVID-19 DIFFERENTIATED BIOSENSING USING GRAPHENE FIELD-EFFECT SENSORS
EAGER:使用石墨烯场效应传感器进行泛变体 COVID-19 差异化生物传感
- 批准号:
2222907 - 财政年份:2022
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
RAPID: Dual COVID-19 and Influenza Virus Detection via Target Antibody-Functionalized Graphene Field-Effect Sensing
RAPID:通过目标抗体功能化石墨烯场效应传感进行双重 COVID-19 和流感病毒检测
- 批准号:
2033846 - 财政年份:2020
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
77th Device Research Conference 2019. To Be Held At The University of Michigan, Ann Arbor, June 23-26, 2019
2019 年第 77 届设备研究会议。将于 2019 年 6 月 23-26 日在安娜堡密歇根大学举行
- 批准号:
1932825 - 财政年份:2019
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
Mechanistic and Device Studies of the New Observation of Non-Volatile Resistance Switching in Atomic Sheets
原子片非易失性电阻切换新观察的机理和器件研究
- 批准号:
1809017 - 财政年份:2018
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
75th Device Research Conference (DRC) 2017. To Be Held at The University of Notre Dame, from June 25 to June 28, 2017.
2017 年第 75 届设备研究会议 (DRC)。将于 2017 年 6 月 25 日至 28 日在圣母大学举行。
- 批准号:
1723662 - 财政年份:2017
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
EAGER: Coupled Opto-Electro-Mechanics in Semiconducting Phosphorene
EAGER:半导体磷烯中的耦合光机电
- 批准号:
1641073 - 财政年份:2016
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
EAGER: Wafer Scalable Dry Transfer of Graphene onto Silicon Substrates
EAGER:将石墨烯干式转移到硅基板上
- 批准号:
1444398 - 财政年份:2014
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
I-Corps: Universal Biaxial Compressive Strain Measurement System
I-Corps:通用双轴压缩应变测量系统
- 批准号:
1506913 - 财政年份:2014
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
Conference Support Funding for KAUST Electronic Devices, Materials and Systems for Sustainable Future Conference. To be Held at KAUST, Saudi Arabia in Winter 2014.
为 KAUST 电子设备、材料和系统可持续未来会议提供会议支持资金。
- 批准号:
1361453 - 财政年份:2013
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
CAREER: Integrated Si-CMOS and Graphene Heterogeneous Nanoelectronics
职业:集成 Si-CMOS 和石墨烯异质纳米电子学
- 批准号:
1150034 - 财政年份:2012
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328741 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328906 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328908 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328947 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
- 批准号:
2329063 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329087 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant