Spectroscopy-driven design of an efficient photocatalyst for CO2 reduction (Ext.)
光谱驱动的二氧化碳减排高效光催化剂设计(Ext.)
基本信息
- 批准号:EP/P034497/1
- 负责人:
- 金额:$ 79.98万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is an extension of the original Fellowship "Spectroscopy-driven design of an efficient photocatalyst for CO2 reduction"There is sufficient solar energy incident on the UK to provide for all of our energy needs. However the insolation level varies hugely both within a day and on a seasonal level. For any energy technology to be viable it is essential that it is reliable. A route to overcoming the intermittency of supply issue is to use the solar energy to drive the production of a chemical fuel which can be stored and transported to be available when and where it is needed. Sustainable carbon-based solar fuels and feedstocks (e.g. CH4, CH3OH, CO) can be produced by the coupling of light driven water oxidation to the reduction of CO2. This is an exciting prospect but to realise the goal of low carbon-intensity fuel economy breakthroughs are required for both fuel generation and utilisation systems. Current materials for CO2 reduction and water oxidation do not achieve the required level of efficiency and stability at a viable cost. Similarly the most promising clean technologies for electricity generation on demand from carbon fuels, fuel cells, often suffer from relatively low efficiencies and intolerances to impurities in the fuel feed.The original fellowship has been highly successful in delivering new low-cost catalysts that can either be driven directly by sunlight (photocatalysts) or indirectly using electrical energy (which could in principle come from a PV panel) to reduce CO2 to CO, an important liquid fuel precursor. Part of the original fellowship developed new capabilities within the UK for a highly sensitive surface sensitive spectroscopy, IR-Vis Sum Frequency Generation Spectroscopy. This experiment has been used to identify with an incredible level of detail the mechanisms of catalysts at surfaces. These, and our wider spectroscopic studies, have been critical in guiding our own catalyst design programme. But the need for mechanistic insights extends beyond our own synthetic programme. A lack of understanding of the mechanisms of catalysis occurring on the surface of electrodes and photoelectrodes is a limiting factor for the entire field preventing the rational development of new materials. Therefore our spectroscopy driven programme will be expanded to address both the crucial reactions of fuel generation (water oxidation and CO2 reduction) as well as to fuel utilisation chemistry, through the study of state of the art metal-oxide fuel cells. The project is ambitious, aiming not just to provide the first identification of all key intermediates during water oxidation on the most commonly studied photoelectrode (hematite), but also to explore how secondary interactions with water and electrolyte salts control the activity. A similar level of mechanistic detail is also sought from leading CO2 reduction catalysts and fuel cell electrodes. This level of mechanistic detail that we aim to deliver could be transformative to our own, collaborators and the wider communities programmes of material development. The delivery of scalable, efficient materials for solar fuels production and utilisation is a challenging goal but the potential impact is enormous. An improved understanding of surface mechanisms on current materials would represent an important step towards this ambition.
这是原来的奖学金“光谱驱动的设计一个有效的光催化剂减少二氧化碳“有足够的太阳能入射到英国,以提供我们所有的能源需求。然而,日照水平在一天之内和季节性水平上变化很大。任何能源技术要想可行,就必须可靠。克服供应间歇性问题的一种方法是利用太阳能来驱动化学燃料的生产,这些燃料可以储存和运输,以便在需要的时候和地点提供。可持续的碳基太阳能燃料和原料(例如CH 4、CH 3OH、CO)可以通过光驱动的水氧化与CO2还原的耦合来生产。这是一个令人兴奋的前景,但要实现低碳强度燃料经济性的目标,燃料生产和利用系统都需要突破。目前用于CO2还原和水氧化的材料不能以可行的成本实现所需的效率和稳定性水平。同样,最有前途的清洁发电技术,从碳燃料,燃料电池,通常遭受相对较低的效率和对燃料进料中杂质的不耐受性。最初的奖学金在提供新的低成本催化剂方面非常成功,这些催化剂可以直接由阳光驱动光催化剂)或间接使用电能(原则上可来自PV板)将CO2还原为CO(一种重要的液体燃料前体)。最初的奖学金的一部分在英国开发了高灵敏度表面灵敏光谱学的新能力,IR-Vis和频发生光谱学。该实验已被用于以令人难以置信的细节水平识别表面催化剂的机制。这些,以及我们更广泛的光谱研究,在指导我们自己的催化剂设计方案中至关重要。但是,对机械论见解的需要超出了我们自己的合成程序。对电极和光电极表面上发生的催化机制缺乏了解是整个领域的限制因素,阻碍了新材料的合理开发。因此,我们的光谱驱动计划将扩大到解决燃料生成的关键反应(水氧化和CO2还原)以及燃料利用化学,通过研究最先进的金属氧化物燃料电池。该项目是雄心勃勃的,其目标不仅是在最常研究的光电极(赤铁矿)上首次鉴定水氧化过程中的所有关键中间体,而且还探索与水和电解质盐的次级相互作用如何控制活性。从领先的CO2还原催化剂和燃料电池电极中也可以找到类似水平的机理细节。我们旨在提供的这种机械细节水平可能会对我们自己、合作者和更广泛的社区物质发展计划产生变革性影响。为太阳能燃料的生产和利用提供可扩展的高效材料是一个具有挑战性的目标,但潜在的影响是巨大的。更好地理解当前材料的表面机制将是实现这一目标的重要一步。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emerging technologies: general discussion.
新兴技术:一般性讨论。
- DOI:10.1039/d1fd90048j
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Bardow A
- 通讯作者:Bardow A
Photocatalytic overall water splitting under visible light enabled by a particulate conjugated polymer loaded with iridium
由负载铱的颗粒共轭聚合物实现可见光下光催化整体水分解
- DOI:10.26434/chemrxiv-2022-8vr18
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bai Y
- 通讯作者:Bai Y
Photocatalytic Overall Water Splitting Under Visible Light Enabled by a Particulate Conjugated Polymer Loaded with Palladium and Iridium.
- DOI:10.1002/anie.202201299
- 发表时间:2022-06-27
- 期刊:
- 影响因子:16.6
- 作者:Bai, Yang;Li, Chao;Liu, Lunjie;Yamaguchi, Yuichi;Bahri, Mounib;Yang, Haofan;Gardner, Adrian;Zwijnenburg, Martijn A.;Browning, Nigel D.;Cowan, Alexander J.;Kudo, Akihiko;Cooper, Andrew, I;Sprick, Reiner Sebastian
- 通讯作者:Sprick, Reiner Sebastian
Photocatalytic Overall Water Splitting Under Visible Light Enabled by a Particulate Conjugated Polymer Loaded with Palladium and Iridium**
由负载钯和铱的颗粒共轭聚合物实现可见光下光催化整体水分解**
- DOI:10.1002/ange.202201299
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Bai Y
- 通讯作者:Bai Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Cowan其他文献
Alexander Cowan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Cowan', 18)}}的其他基金
Water dissociation interfaces for high current density bipolar membrane electrolysers
高电流密度双极膜电解槽的水离解接口
- 批准号:
EP/W033283/1 - 财政年份:2022
- 资助金额:
$ 79.98万 - 项目类别:
Research Grant
Zero-Chem: Zerogap bipolar membrane electrolyser for CO2 reduction to chemicals & fuels
Zero-Chem:Zerogap 双极膜电解槽,用于将二氧化碳还原为化学品
- 批准号:
EP/W038021/1 - 财政年份:2022
- 资助金额:
$ 79.98万 - 项目类别:
Research Grant
REDEEM-electrocat: Rethinking Electrode Design - Emergent Electronic and Magnetic effects in electrocatalysis
REDEEM-electriccat:重新思考电极设计 - 电催化中出现的电子和磁效应
- 批准号:
EP/V048481/1 - 财政年份:2021
- 资助金额:
$ 79.98万 - 项目类别:
Research Grant
Spectroscopy-driven design of an efficient photocatalyst for carbon dioxide reduction
光谱驱动的二氧化碳减排高效光催化剂设计
- 批准号:
EP/K006851/1 - 财政年份:2013
- 资助金额:
$ 79.98万 - 项目类别:
Fellowship
相似国自然基金
深度势辅助分子定构的介电弹性体驱动器理性设计与一体化制备
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
同步改善锌离子电池阴/阳极稳定性的电解质数据驱动设计及界面调控机制研究
- 批准号:MS25E020027
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
“天然多酚-液态金属 ”磁驱动抗生物膜
材料的设计与应用
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
数智设计驱动下的重庆崖壁空间重构与活化策略研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
跨文化背景下社交媒体数据驱动的用户体验设计方法研究
- 批准号:2025JJ60818
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向微型拍翼飞行器设计的蜜蜂飞行的
气动力和翅膀驱动机理研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
连续变弯度柔性机翼的高动态驱动模式
设计与稳定控制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
易驱动多稳态可重构超材料的设计方法
研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
人工智能驱动的聚合物固态电解质筛选
设计研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
SynBioNexus: AI驱动的微生物细胞工厂智能设计与敏捷验证
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
CAS-Climate: CAREER: A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization (ZERO-ACCELERATOR)
CAS-气候:职业:加速电网深度脱碳的统一零碳驱动设计框架(零加速器)
- 批准号:
2338158 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:
2344664 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
A Platform for Hierarchical Data-Driven Design, Fabrication, and Control of Modular Soft Robots with Slender Beams for Locomotion and Manipulation
用于具有细长梁的移动和操纵模块化软机器人的分层数据驱动设计、制造和控制平台
- 批准号:
23K26071 - 财政年份:2024
- 资助金额:
$ 79.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Continuing Grant
GOALI: Data-driven design of recycling tolerant aluminum alloys incorporating future material flows
目标:数据驱动的可回收铝合金设计,结合未来的材料流
- 批准号:
2243914 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Standard Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 79.98万 - 项目类别:
Operating Grants