The physics of plasmonic gain in low-dimensional electronic systems

低维电子系统中等离子体增益的物理学

基本信息

  • 批准号:
    EP/R00501X/1
  • 负责人:
  • 金额:
    $ 67.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

A number of theoretical studies, including our own, have recently shown that the properties of plasmons can be influenced strongly by dc currents flowing in the materials that support them. This, in principle, leads to the possibility of plasmon gain by a transfer of power from the dc current, with the strength of the interaction between the plasmons and the current being proportional to the dc electron drift velocity, which can be very high in semiconductors but is only small in metals, due to much more frequent electron collisions. Unfortunately, there have been only a few direct experimental observations of the interaction between plasmons and dc currents. These have, though, confirmed the basic prediction - that the plasmon wavevector depends on the strength and direction of the dc electron drift velocity. The current state-of-the-art in the field can be summarised as follows: 1) Several theoretical works predict THz oscillations by interaction of plasmons with dc currents in low-dimensional systems (LDSs); 2) Low-power THz emission from LDSs has been obtained, but the role of plasmons in these experiments has not been fully understood; 3) Current-driven plasmon gain has never been directly measured. Further progress now requires basic experimental studies of the interaction between plasmons and dc currents, supported by theoretical interpretation of the mechanisms for plasmon gain. Previous emission experiments were ill-suited for this purpose. Coherent THz emission should appear at a threshold when plasmon gain (due to the interaction with a dc current) exceeds loss, as in a laser. However, in the sub-threshold regime when the gain is weak, no emission can be observed and, therefore, the gain could not be quantified in previous experiments. Moreover, weak plasmon emission may be obscured by other mechanisms, notably by thermal radiation. Likewise, many widely used methodologies based on photothermal plasmon detection are unsuitable since they do not permit interactions with dc currents to be probed.Our experimental technique allows us to address these issues, and to study the propagation of plasmons through LDSs, and recover their full THz transmission spectra. Suited ideally for studying plasmon gain, it gives an unique ability to characterise the same plasmon device in the passive (no dc current), sub-threshold, and above-threshold regimes. At the same time, our new theoretical models will allow us both to analyse experimental results and to design optimized structures. These parallel advances will be crucial to understand and demonstrate plasmon gain for the first time. Step-by-step improvements will ultimately lead to THz emission - powerful, cheap, and tuneable (100 GHz - 10 THz) sources are a long-standing goal for the international community, but despite progress in many areas, no compact, room-temperature source exists with CW mW power output between 1 and 4 THz. Our disruptive technology offers the potential to solve this problem since semiconductor plasmons have resonant frequencies that fall in the THz range when confined to LDSs. It will also contribute to realising the potential of plasmons in LDS for THz detectors and sensors.
包括我们自己在内的许多理论研究最近都表明,等离子体激元的性质会受到支撑它们的材料中流动的直流电流的强烈影响。原则上,这导致了通过从直流电流转移功率来获得等离子体激元增益的可能性,其中等离子体激元和电流之间的相互作用的强度与直流电子漂移速度成比例,由于更频繁的电子碰撞,直流电子漂移速度在半导体中可以非常高,但在金属中仅很小。不幸的是,只有少数直接的实验观察等离子体激元和直流电流之间的相互作用。不过,这些都证实了基本的预测-等离子体波矢量取决于直流电子漂移速度的强度和方向。目前该领域的最新技术可以总结如下:1)一些理论工作预测了低维系统(LDSs)中等离子体激元与直流电流相互作用的THz振荡; 2)已经获得了LDSs的低功率THz发射,但等离子体激元在这些实验中的作用尚未完全理解; 3)从未直接测量过电流驱动的等离子体激元增益。进一步的进展,现在需要等离子体激元和直流电流之间的相互作用的基础实验研究,支持等离子体激元增益的机制的理论解释。以前的排放实验不适合这个目的。当等离子体增益(由于与直流电流的相互作用)超过损耗时,相干太赫兹发射应该出现在阈值处,就像在激光器中一样。然而,在亚阈值制度时,增益是弱的,没有发射可以观察到,因此,增益不能量化在以前的实验。此外,弱的等离子体发射可能被其他机制,特别是热辐射所掩盖。同样,许多广泛使用的光热等离子体激元检测的基础上的方法是不合适的,因为他们不允许与直流电流的相互作用被probing.Our实验技术使我们能够解决这些问题,并研究通过LDS等离子体激元的传播,并恢复其完整的THz透射光谱。理想地适合于研究等离子体增益,它提供了一个独特的能力,使相同的等离子体器件在被动(无直流电流),亚阈值,和阈值以上的制度。同时,我们的新理论模型将使我们能够分析实验结果并设计优化结构。这些平行的进展将是至关重要的理解和证明等离子体增益的第一次。逐步改进将最终导致太赫兹发射-强大,廉价和可调谐(100 GHz - 10 THz)的源是国际社会的长期目标,但尽管在许多领域取得了进展,但没有紧凑的室温源存在CW mW功率输出在1和4 THz之间。我们的颠覆性技术提供了解决这一问题的潜力,因为半导体等离子体激元在局限于LDS时具有落入THz范围内的谐振频率。它还将有助于实现LDS中等离子体激元用于THz探测器和传感器的潜力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-order operating mode selection using second-order bandgap in THz Bragg fiber
Guidance of Terahertz Wave over Commercial Optical Fiber
太赫兹波在商用光纤上的引导
  • DOI:
    10.1109/irmmw-thz50926.2021.9566906
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong B
  • 通讯作者:
    Hong B
Photoconductive Arrays for High-Field Terahertz Generation
用于高场太赫兹产生的光电导阵列
  • DOI:
    10.1109/irmmw-thz.2019.8874371
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bacon D
  • 通讯作者:
    Bacon D
Modelling and Study of a THz Hollow Photonic Crystal Integrated Waveguide
太赫兹空心光子晶体集成波导的建模与研究
  • DOI:
    10.1109/irmmw-thz.2018.8510453
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hong B
  • 通讯作者:
    Hong B
Investigation into free-space terahertz radiation from a LT-GaAs-on-quartz photoconductive emitter
研究来自 LT-GaAs-on-quartz 光电导发射器的自由空间太赫兹辐射
  • DOI:
    10.1109/irmmw-thz.2017.8066848
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bacon D
  • 通讯作者:
    Bacon D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Cunningham其他文献

Parathyroid sensing of the direction of change of calcium in uremia.
甲状旁腺感知尿毒症中钙的变化方向。
  • DOI:
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Jonathan T.C. Kwan;Jeanette C. Beer;Kate Noonan;John Cunningham
  • 通讯作者:
    John Cunningham
Ultra-brief intervention for problem drinkers: three-month follow-up results from a randomized controlled trial
441 SIMULATION OF THE “ADRENAL EXHAUSTION” PHENOMENON BY icv CRF
441 颅内室旁核 CRF 对“肾上腺疲劳”现象的模拟
  • DOI:
    10.1203/00006450-198504000-00471
  • 发表时间:
    1985-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    John Cunningham;Hans H Bode;Patricia Meara
  • 通讯作者:
    Patricia Meara
Back to the future: a very brief history of brief interventions
  • DOI:
    10.1186/1940-0640-7-s1-a24
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Jim McCambridge;John Cunningham;Kypros Kypri
  • 通讯作者:
    Kypros Kypri
Mineral metabolism and vitamin D in chronic kidney disease—more questions than answers
慢性肾脏病中的矿物质代谢与维生素 D——疑问多于答案
  • DOI:
    10.1038/nrneph.2011.53
  • 发表时间:
    2011-05-03
  • 期刊:
  • 影响因子:
    39.800
  • 作者:
    David J. A. Goldsmith;John Cunningham
  • 通讯作者:
    John Cunningham

John Cunningham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Cunningham', 18)}}的其他基金

Acoustic control of quantum cascade heterostructures: the THz "S-LASER"
量子级联异质结构的声学控制:太赫兹“S-LASER”
  • 批准号:
    EP/V004743/1
  • 财政年份:
    2021
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Research Grant
33rd International Conference on Machine Learning (ICML 2016)
第33届国际机器学习会议(ICML 2016)
  • 批准号:
    1630365
  • 财政年份:
    2016
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Standard Grant
Acoustoelectric Methods for the Generation Manipulation and Detection of THz Radiation
用于产生操纵和检测太赫兹辐射的声电方法
  • 批准号:
    EP/M01598X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Research Grant
TERANET: An EPSRC Network for UK researchers in terahertz science and technology
TERANET:英国太赫兹科学技术研究人员的 EPSRC 网络
  • 批准号:
    EP/M00306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Research Grant
Northeast LSAMP Bridge to the Doctorate
东北LSAMP通往博士学位的桥梁
  • 批准号:
    1249283
  • 财政年份:
    2012
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Standard Grant
Major transitions in evolution: understanding the fossil evidence
进化的重大转变:了解化石证据
  • 批准号:
    NE/J018325/1
  • 财政年份:
    2012
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Fellowship
On-chip terahertz spectroscopy for characterisation of pharmaceutical polymorphs
用于表征药物多晶型物的片上太赫兹光谱
  • 批准号:
    EP/H007881/1
  • 财政年份:
    2010
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Research Grant
The physics and technology of low-dimensional electronic systems at terahertz frequencies
太赫兹频率低维电子系统的物理和技术
  • 批准号:
    EP/F029543/1
  • 财政年份:
    2008
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Research Grant
Northeast LSAMP Phase II Proposal
东北LSAMP二期提案
  • 批准号:
    0503331
  • 财政年份:
    2005
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Cooperative Agreement
SBIR Phase I: Integrated Optical Monitor for Hybrid Opto-Electronic Transmitter
SBIR 第一阶段:用于混合光电发射器的集成光学监视器
  • 批准号:
    0407458
  • 财政年份:
    2004
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Plasmonic纳米孔光电同步传感用于肿瘤细胞外泌体单颗粒多参数检测的研究
  • 批准号:
    22304162
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于协同耦合策略构筑超灵敏plasmonic PEC纳米生物传感器的研究
  • 批准号:
    22004002
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
细菌视紫红质/Ag-M plasmonic杂化纳米生物电极用于痕量TNT电化学检测
  • 批准号:
    21605057
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于外在超手性Plasmonic纳米结构的生物分子构象传感技术研究
  • 批准号:
    11604227
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于plasmonic杂化纳米结构的新型化学和生物传感研究
  • 批准号:
    21475125
  • 批准年份:
    2014
  • 资助金额:
    87.0 万元
  • 项目类别:
    面上项目
单个固态plasmonic纳米孔基单分子电分析化学研究
  • 批准号:
    21175125
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
金属表面等离极化激元(SPP)和局域表面等离激元(LSP)耦合效应的光学性质研究
  • 批准号:
    11104032
  • 批准年份:
    2011
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
  • 批准号:
    EP/Y037294/1
  • 财政年份:
    2025
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Research Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
  • 批准号:
    2349887
  • 财政年份:
    2024
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Standard Grant
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
  • 批准号:
    23K23191
  • 财政年份:
    2024
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Infra-Plas: Colloidal Quantum Dots for Short-Wave Infrared Plasmonic Lasers
Infra-Plas:用于短波红外等离子激光器的胶体量子点
  • 批准号:
    EP/Z000912/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Fellowship
EAGER: Enhancing plasmonic mode coupling in metal insulator metal structures
EAGER:增强金属绝缘体金属结构中的等离子体模式耦合
  • 批准号:
    2334968
  • 财政年份:
    2023
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Standard Grant
A ultra-sensitive infrared plasmonic-thermoelectric system
超灵敏红外等离子体热电系统
  • 批准号:
    23H01785
  • 财政年份:
    2023
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Creation of photonic reaction field based on collectrive behaviour of plasmonic particles using quntum coherence
利用量子相干性基于等离子体粒子的集体行为创建光子反应场
  • 批准号:
    23H01916
  • 财政年份:
    2023
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rapid Plasmonic PCR Device and Platform for Single Step Disease Detection and Treatment To Enable Infectious Disease Symptom To Treatment In Minutes
用于单步疾病检测和治疗的快速等离子 PCR 设备和平台,可在几分钟内从传染病症状到治疗
  • 批准号:
    10076382
  • 财政年份:
    2023
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Grant for R&D
Quantum dot emission from plasmonic nanocavities
等离子体纳米腔的量子点发射
  • 批准号:
    2885938
  • 财政年份:
    2023
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Studentship
Maximizing the Harvesting of Photogenerated Electron-Hole Pairs in Hybrid Plasmonic Nanosystems
最大化混合等离子体纳米系统中光生电子空穴对的收获
  • 批准号:
    2304910
  • 财政年份:
    2023
  • 资助金额:
    $ 67.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了