Pothole Identification and Management Autonomous System

坑洞识别与管理自主系统

基本信息

  • 批准号:
    EP/R005400/1
  • 负责人:
  • 金额:
    $ 19.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Context:A 2016 survey for KwikFit by ICM Research estimated the annual total cost of pothole damage to UK motorists was £684m. Research by the Asphalt Industries Alliance (ALARM 2016) identified that the total cost of compensation claims against local authorities in England and Wales for 2015/2016 was £28.4m - 76% of which was directly attributable to potholes. Whilst local authorities have a legal responsibility for dealing with damage to roads, they are heavily dependent on issues being reported to them by the general public to enable assessment and repair. The reactive nature of pothole reporting, assessment and repair is inefficient and largely ineffective.Aims and Objectives:The aim of the project is to develop technology improving the way local authorities identify and manage potholes, and is designed to enable them to improve roads and reduce costs. The key objectives are:1. To develop affordable sensor technology to enable a vehicle mounted sensor travelling at speeds of up to 65Km/hr to identify and capture road damage between road kerb and centre line.2. To classify the road damage for reporting purposes.3. To provide an image of the damage.4. To provide an accurate location of the road damage.5. To create a "learning database" of typical damage parameters.6. To report the road damage on a store-and-forward or real-time basis.7. To capture and store data on a cloud based service.8. To map data so that it is easily understood.9. To provide web-based access to map based products.The project will initially focus on delivering a prototype for identifying, classifying, reporting and sharing information on potholes. Real-time applications will be developed following successful demonstration on the initial capability.Applications and benefits:The project will provide vehicle mounted sensors which can identify and classify potholes and other road damage, provide an accurate position for the damage to the road, report the occurrence by forwarding to cloud storage and enable the data to be accessed through a web browser showing the data on a map. We believe the most effective mechanism to deliver comprehensive mapping of local authority roads will be by mounting the sensors on refuge and recycling waste collection vehicles. This could be supplemented by standalone survey vehicles. Combining data from local authorities would provide comprehensive mapping of a region and potentially the UK.Benefits include:1. The creation of a detailed web-based mapping source of potholes in roads for highways agencies, local authorities and private subscribers. The data would include classification of damage, imaging and accurate positioning. This would enable highways authorities and local authorities to make informed decisions on the prioritisation of road repairs and provide private subscribers with a tool to avoid road damage to private vehicles.2. Real-time data capture and reporting of ground disturbances for military users in operational environments with a risk of improvised explosive device (IED) attack; enabling potential threats to be mitigated.3. Real-time data capture and reporting of natural and man-made hazards for unmanned precision farming vehicles; enabling avoidance action to be taken before impact.
背景:ICM研究公司2016年为KwikFit做的一项调查估计,英国驾车者每年因路面坑洼造成的损失总计为6.84亿英镑。沥青工业联盟(ALARM 2016)的研究表明,2015/2016年英格兰和威尔士地方当局索赔的总费用为2840万英镑,其中76%直接归因于坑洞。虽然地方当局有处理道路损坏的法律责任,但他们严重依赖公众向他们报告的问题来进行评估和修复。坑洼报告、评估和修复的反应性是低效的,而且在很大程度上是无效的。目的和目标:该项目的目的是开发技术,改进地方当局识别和管理坑洼的方式,并使他们能够改善道路和降低成本。主要目标是:1。开发经济实惠的传感器技术,使车载传感器能够以高达65公里/小时的速度行驶,以识别和捕捉道路边缘和中心线之间的道路损坏情况。对道路损坏进行分类,以便进行报告。提供损坏的图像。提供道路损坏的准确位置。创建典型损伤参数的“学习数据库”。以存储转发或实时方式报告道路损坏情况。在基于云的服务上捕获和存储数据。将数据绘制成地图以便于理解。为基于地图的产品提供基于网络的访问。该项目最初将专注于提供一个识别、分类、报告和共享坑洼信息的原型。在初步能力成功演示后,将开发实时应用程序。应用和好处:该项目将提供车载传感器,可以识别和分类坑洼和其他道路损坏,为道路损坏提供准确的位置,通过转发到云存储报告发生情况,并使数据能够通过web浏览器访问,并在地图上显示数据。我们认为,将传感器安装在避难所和回收废物收集车上,将是提供地方当局道路综合地图的最有效机制。这可以由独立的调查车辆加以补充。结合地方当局的数据将提供一个地区乃至整个英国的全面地图。福利包括:1。为高速公路机构、地方当局和私人订户创建详细的基于网络的道路坑洼地图资源。这些数据将包括损伤分类、成像和准确定位。这将使公路当局和地方当局能够就道路维修的优先次序作出明智的决定,并为私人用户提供一种工具,以避免私人车辆受到道路损坏。在有简易爆炸装置(IED)袭击风险的作战环境中,为军事用户实时捕获和报告地面干扰;使潜在的威胁得以减轻。面向无人精准农用车的天灾人祸实时数据采集与报告;使避免动作在撞击前采取。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Autonomous Pothole Detection and Management System
自主坑洼检测和管理系统
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alaa Alzoubi
  • 通讯作者:
    Alaa Alzoubi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nabil Aouf其他文献

Depth-Enhanced Deep Learning Approach For Monocular Camera Based 3D Object Detection
Special Issue on: Airborne Simultaneous Localisation and Map Building (A-SLAM)
  • DOI:
    10.1007/s10846-009-9322-1
  • 发表时间:
    2009-04-03
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Nabil Aouf;Anibal Ollero;Jurek Z. Sasiadek
  • 通讯作者:
    Jurek Z. Sasiadek
Towards Learning-Based Distributed Task Allocation Approach for Multi-Robot System
面向多机器人系统的基于学习的分布式任务分配方法
Hierarchical Deep Reinforcement Learning for cubesat guidance and control
用于立方星制导与控制的分层深度强化学习
  • DOI:
    10.1016/j.conengprac.2024.106213
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Abdulla Tammam;Nabil Aouf
  • 通讯作者:
    Nabil Aouf
AI-based monocular pose estimation for autonomous space refuelling
  • DOI:
    10.1016/j.actaastro.2024.04.003
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Duarte Rondao;Lei He;Nabil Aouf
  • 通讯作者:
    Nabil Aouf

Nabil Aouf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nabil Aouf', 18)}}的其他基金

Robotics & Remote Sensing for HMA & ERW Survey: Southeast Asia Feasibility Study with LMIC Collaborator Engagement
机器人技术
  • 批准号:
    ST/R002991/1
  • 财政年份:
    2017
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

I-Corps: Fisheries Management Through Species Identification Technology
I-Corps:通过物种识别技术进行渔业管理
  • 批准号:
    2348772
  • 财政年份:
    2024
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Standard Grant
Solving Sepsis: Early Identification and Prompt Management Using Machine Learning
解决脓毒症:利用机器学习进行早期识别和及时管理
  • 批准号:
    10623375
  • 财政年份:
    2022
  • 资助金额:
    $ 19.23万
  • 项目类别:
Solving Sepsis: Early Identification and Prompt Management Using Machine Learning
解决脓毒症:利用机器学习进行早期识别和及时管理
  • 批准号:
    10384254
  • 财政年份:
    2022
  • 资助金额:
    $ 19.23万
  • 项目类别:
Building a modelling framework to aid the identification and management of key conservation areas for UK seabirds
建立建模框架以帮助识别和管理英国海鸟的关键保护区
  • 批准号:
    2705376
  • 财政年份:
    2022
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Studentship
FoodSafeR - A joined-up approach to the identification, assessment and management of emerging food safety hazards and associated risks
FoodSafeR - 识别、评估和管理新出现的食品安全危害和相关风险的联合方法
  • 批准号:
    10040484
  • 财政年份:
    2022
  • 资助金额:
    $ 19.23万
  • 项目类别:
    EU-Funded
Automatic identification of cardiorespiratory biomarkers for remote management of chronic conditions
自动识别心肺生物标志物,用于慢性病的远程管理
  • 批准号:
    10033772
  • 财政年份:
    2022
  • 资助金额:
    $ 19.23万
  • 项目类别:
    Collaborative R&D
AI-Based Identification of Rapid Glaucoma Progression to Guide Clinical Management and Accelerate Clinical Trials
基于人工智能的青光眼快速进展识别,指导临床管理并加速临床试验
  • 批准号:
    10553060
  • 财政年份:
    2022
  • 资助金额:
    $ 19.23万
  • 项目类别:
Collaborative multi-site project to speed the identification and management of rare genetic immune diseases
加速罕见遗传免疫疾病的识别和管理的多站点合作项目
  • 批准号:
    10549340
  • 财政年份:
    2021
  • 资助金额:
    $ 19.23万
  • 项目类别:
Identification of Sex Differences in Glycemic Control and Development of a Continuous Glucose Monitoring (CGM) Benefit Index for Optimization of Glycemic Management in the Hospital
识别血糖控制中的性别差异并开发连续血糖监测 (CGM) 效益指数以优化医院血糖管理
  • 批准号:
    10771887
  • 财政年份:
    2021
  • 资助金额:
    $ 19.23万
  • 项目类别:
Collaborative multi-site project to speed the identification and management of rare genetic immune diseases
加速罕见遗传免疫疾病的识别和管理的多站点合作项目
  • 批准号:
    10359836
  • 财政年份:
    2021
  • 资助金额:
    $ 19.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了