Fundamental Studies of Electron Correlation with Applications to DFT

电子关联的基础研究及其在 DFT 中的应用

基本信息

  • 批准号:
    EP/R011265/1
  • 负责人:
  • 金额:
    $ 46.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Atoms, molecules and their reactions can be understood by applying quantum mechanics (QM). In order to use QM accurately in a chemical system (known as quantum chemistry), we need to understand how the electrons interact with the nuclei of the atoms in a molecule, and with each other. The problem is that the equations of QM cannot be solved exactly for systems with more than one electron, and so mainstream computational quantum chemistry is built on approximate one-electron models that treat the electron-electron interactions in an average way. However, electrons interact instantaneously and so their motion is correlated. The difference between these two approaches is known as 'electron correlation'. We cannot ignore electron correlation because the correlation energy is similar in size to the energy of making or breaking chemical bonds. Every system to which we apply quantum chemistry needs cheaper, accurate, methods for calculating this critical interaction. The first part of this proposal involves accurately calculating the electron correlation of the basic model system of two electrons and a nucleus, via an elegant series solution method. This method adds several advantages in that it is extremely computationally efficient and accurate. We will calculate highly accurate electron correlation data to develop a full understanding of how electrons interact, even at long range.The second part of this proposal involves using this new, highly accurate, correlation data to develop one of the most widely used techniques in the chemical sciences, density functional theory (DFT). DFT is currently used to provide new knowledge, and to support experimental studies, in areas ranging from nanomaterials and mineralogy to biomolecules and drug discovery. Its success derives from its unique balance of computational speed and reliability, but as DFT is stretched to more complex and exotic chemical regimes, the flaws of key underlying approximations begin to show. This puts a limit on the complexity of systems addressable by current DFT. In this work, we will design and develop two new correlation functionals for use in DFT, by fitting innovative new forms to the new highly accurate data. The first will be based on a form that accurately models electron correlation at all points from the weak to the strong electron correlation limit. The second involves an entirely new functional form. The advantage these new functionals aim to bring is increased accuracy, not only for standard applications, but also for more complex and/or exotic chemical regimes, and for systems where long-range, low-density behavior is prominent, e.g. graphene or 2-D quantum dots. Successful functionals will be implemented in the Molpro computational chemistry package so that computational scientists worldwide can gain access to high accuracy methods for use in their own cutting-edge research, enhancing the discovery of new knowledge for direct applications in the real world.The final part of this proposal involves writing new code to model excited states of three-body systems. It will include directly the electron-electron distance to model accurately the correlated motion of the electrons, and the motion of the nucleus. This will enable us to probe the electron dynamics in excited states and to calculate spectroscopic properties with nuclear motion included. Spectroscopy is an important technique in many areas of science: including atmospheric chemistry, astrochemistry, and astrophysical observations and thus can help us understand e.g. the greenhouse effect and structure of the universe. A particular emphasis will be on Rydberg atoms (large orbit atoms), as these are extremely topical in quantum computing.
原子、分子及其反应可以通过应用量子力学(QM)来理解。为了在化学系统(称为量子化学)中准确地使用量子力学,我们需要了解电子如何与分子中的原子核以及彼此之间相互作用。问题在于,对于具有多个电子的系统,量子力学方程无法精确求解,因此主流计算量子化学是建立在近似单电子模型的基础上的,该模型以平均方式处理电子-电子相互作用。然而,电子瞬时相互作用,因此它们的运动是相关的。这两种方法之间的差异被称为“电子相关”。我们不能忽视电子相关性,因为相关能的大小与形成或破坏化学键的能量相似。我们应用量子化学的每个系统都需要更便宜、准确的方法来计算这种关键的相互作用。该提案的第一部分涉及通过优雅的级数求解方法精确计算两个电子和一个原子核的基本模型系统的电子相关性。该方法具有多个优点,因为它的计算效率极高且准确。我们将计算高精度的电子相关数据,以充分了解电子如何相互作用,即使是在长距离内。该提案的第二部分涉及使用这种新的、高精度的相关数据来开发化学科学中最广泛使用的技术之一,即密度泛函理论(DFT)。 DFT 目前用于提供新知识并支持从纳米材料和矿物学到生物分子和药物发现等领域的实验研究。它的成功源于其计算速度和可靠性之间的独特平衡,但随着 DFT 扩展到更复杂和奇异的化学体系,关键基础近似的缺陷开始显现出来。这限制了当前 DFT 可寻址的系统的复杂性。在这项工作中,我们将通过将创新的新形式与新的高精度数据相匹配,设计和开发两个用于 DFT 的新相关函数。第一个将基于一种精确模拟从弱到强电子相关极限的所有点的电子相关性的形式。第二个涉及全新的功能形式。这些新功能旨在带来的优势是提高准确性,不仅适用于标准应用,而且适用于更复杂和/或奇异的化学体系,以及长程、低密度行为突出的系统,例如石墨烯或二维量子点。成功的泛函将在 Molpro 计算化学包中实现,以便世界各地的计算科学家能够获得高精度方法,用于他们自己的前沿研究,增强新知识的发现,以便在现实世界中直接应用。该提案的最后部分涉及编写新代码来模拟三体系统的激发态。它将直接包括电子-电子距离,以准确模拟电子的相关运动和原子核的运动。这将使我们能够探测激发态的电子动力学,并计算包括核运动在内的光谱特性。光谱学是许多科学领域的一项重要技术:包括大气化学、天体化学和天体物理观测,因此可以帮助我们了解例如温室效应和宇宙结构。特别强调的是里德伯原子(大轨道原子),因为它们在量子计算中非常热门。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coulomb hole supplementary from Electron correlation in Li
锂中电子关联的库仑空穴补充
  • DOI:
    10.6084/m9.figshare.7461530
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baskerville A
  • 通讯作者:
    Baskerville A
Reparametrization of the Colle-Salvetti formula.
  • DOI:
    10.1098/rsos.211333
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Baskerville AL;Targema M;Cox H
  • 通讯作者:
    Cox H
Correlated energy from radial density-energy relations.
  • DOI:
    10.1098/rsos.221402
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Baskerville, Adam L.;Gray, Conor;Cox, Hazel
  • 通讯作者:
    Cox, Hazel
Maximum Ionization in Restricted and Unrestricted Hartree-Fock Theory
限制和非限制 Hartree-Fock 理论中的最大电离
  • DOI:
    10.3390/atoms9010013
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Cox H
  • 通讯作者:
    Cox H
Consequences of approximating electron correlation effects
  • DOI:
    10.1080/00268976.2022.2146540
  • 发表时间:
    2022-12-17
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Baskerville,Adam L.;Cox,Philippa U.;Cox,Hazel
  • 通讯作者:
    Cox,Hazel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hazel Cox其他文献

Hazel Cox的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
  • 批准号:
    2401388
  • 财政年份:
    2024
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Continuing Grant
Quantum studies of dissociative electron attachment to molecules
分子离解电子附着的量子研究
  • 批准号:
    DE240100176
  • 财政年份:
    2024
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Discovery Early Career Researcher Award
Direct measurements of electron-molecule collision data at very-low-energy for studies in planetary atmosphere
直接测量极低能量下的电子-分子碰撞数据,用于行星大气中的研究
  • 批准号:
    23K03473
  • 财政年份:
    2023
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of the Proton Structure with Electron Beams
用电子束研究质子结构
  • 批准号:
    2310067
  • 财政年份:
    2023
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Standard Grant
A National Electron Diffraction Facility for Nanomaterial Structural Studies
用于纳米材料结构研究的国家电子衍射装置
  • 批准号:
    EP/X014444/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Research Grant
A National Electron Diffraction Facility for Nanomaterial Structural Studies
用于纳米材料结构研究的国家电子衍射装置
  • 批准号:
    EP/X014606/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Research Grant
Nuclear Magnetic Resonance Studies of Quantum Criticality in Correlated Electron Materials
相关电子材料量子临界性的核磁共振研究
  • 批准号:
    2210613
  • 财政年份:
    2022
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Standard Grant
Ultra-low temperature scanning-tunneling microscopy studies on bottom-up strongly correlated electron systems
自下而上强相关电子系统的超低温扫描隧道显微镜研究
  • 批准号:
    22K18696
  • 财政年份:
    2022
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Shining Light on Metalloprotein Mechanism: Single Protein Crystal Catalytic Studies Driven by 'Caged' Electron Sources
揭示金属蛋白机制:“笼式”电子源驱动的单蛋白晶体催化研究
  • 批准号:
    EP/V048988/1
  • 财政年份:
    2021
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Research Grant
Theoretical Studies of Ultrafast Electron Dynamics in Molecules Interacting with Intense Laser Pulses
分子与强激光脉冲相互作用的超快电子动力学的理论研究
  • 批准号:
    2110628
  • 财政年份:
    2021
  • 资助金额:
    $ 46.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了