Ultra-Reduced Polyoxometalates as Electron-Coupled-Proton-Systems for Energy Storage

超还原多金属氧酸盐作为电子耦合质子系统用于能量存储

基本信息

  • 批准号:
    EP/R020914/1
  • 负责人:
  • 金额:
    $ 71.62万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

As our reliance on renewable energy sources grows, so too does our need to store this energy in order to store excess energy, & also respond when demand exceeds the generating capacity in the system. Amongst the numerous solutions that have been proposed for this challenge, two stand out in terms of their flexibility and scalability: storage of energy as electrical charge in batteries, and storage of energy via conversion to chemical fuels. Both of these approaches bring their own unique set of advantages and drawbacks, and it is often not obvious as to which would make the better choice in any particular circumstance. Against this background, energy storage solutions that can act as both batteries and fuel generation devices (depending on the user's requirements) could have a transformative effect on how renewable energy is utilised. For renewable fuel generation, the electrolysis of water to give hydrogen fuel is attractive. However, renewables tend to be intermittent giving serious problems when operating conventional electrolysers using such stop/start inputs, such as unacceptably high levels of mixing of the product gases and accelerated degradation of expensive cell components. Previously, we showed how low-power energy inputs (characteristic of renewables) could be used to electrolyse water to produce pure hydrogen and oxygen regardless of the electrolytic current density by employing a polyoxometalate cluster as soluble redox mediator (an "Electron-Coupled-Proton Buffer", ECPB) in a new type of electrolyser device. This also enabled a new approach to be taken to on-demand hydrogen production via electrolysis: the hydrogen can now be produced remotely from the electrochemical cell over a fixed catalyst bed, increasing the rate of H2 production by a factor of over 30 compared to state-of-the-art proton exchange membrane electrolysers at equivalent catalyst loadings.However, our previously-reported systems all suffer from rather low electron storage densities: normally only two electrons can be stored reversibly per mediator molecule, which means that large volumes of solution are required for decoupled electrolytic hydrogen production. The large volumes of solution involved also preclude the use of the reduced electrolyte as an energy storage medium in its own right: as so much liquid is needed to store a few electrons it is not practical to use this as a long-term energy carrier (e.g. in a redox flow battery). If the number of electrons stored per mediator molecule could be increased by an order of magnitude, then one would have a viable electrolyte system which could be reduced in an electrochemical device using renewable power inputs, and then directed either to decoupled hydrogen (fuel) production or used as a high energy-density electrolyte in a redox flow battery (direct energy storage), see Figure 1. Such a system would have the potential to completely revolutionise the storage of renewable energy.Here, we aim to investigate a new range of polyoxometalates as redox mediators that can be reduced by at least 18 electrons per molecule. Preliminary results indicate that the some POMs can be reversibly reduced and re-oxidised by at least this number of electrons in aqueous solution, provided that the concentration is high and the pH is kept below a certain value. With this as our starting point, we will use our expertise in the construction of polyoxometalate-based electrochemical devices to develop systems that can hold an ever-greater number of electrons per volume of electrolyte. At a fundamental level, we will apply a battery of cutting-edge techniques to unravel the underlying causes of the remarkable stability of these ultra-reduced species in aqueous solution, and develop models that explain the nature of these species. We will explore the use of new POM-based materials and device architectures in order to produce energy storage systems with the maximum flexibility and energy density.
随着我们对可再生能源的依赖越来越大,我们也需要储存这些能源以储存多余的能源,并在需求超过系统发电能力时做出反应。在针对这一挑战提出的众多解决方案中,有两种在灵活性和可扩展性方面脱颖而出:将能量存储为电池中的电荷,以及通过转化为化学燃料来存储能量。这两种方法都有自己独特的优点和缺点,在任何特定情况下,哪种方法会做出更好的选择往往并不明显。在这种背景下,既可以作为电池又可以作为燃料发电设备的储能解决方案(取决于用户的要求)可能会对可再生能源的利用方式产生变革性影响。对于可再生燃料发电,电解水以产生氢燃料是有吸引力的。然而,可再生能源往往是间歇性的,当使用这种停止/启动输入操作常规电解槽时会产生严重的问题,例如产物气体的不可接受的高水平混合和昂贵电池组件的加速降解。先前,我们展示了如何可以使用低功率能量输入(可再生能源的特征)来电解水以产生纯氢气和氧气,而不管电解电流密度如何,这是通过在新型电解槽装置中采用聚氧乙烯酸盐簇作为可溶性氧化还原介体(“电子耦合质子缓冲液”,ECPB)来实现的。这也使得通过电解按需制氢的新方法成为可能:现在可以在固定催化剂床上从电化学电池远程生产氢气,与现有技术的质子交换膜电解槽相比,在相等的催化剂负载下,将H2生产速率提高了30倍以上。我们先前报道的体系都具有相当低的电子存储密度:通常每个介体分子仅能可逆地存储两个电子,这意味着需要大量的溶液用于去耦电解制氢。所涉及的大量溶液还排除了还原电解质本身作为能量储存介质的使用:由于需要如此多的液体来储存一些电子,因此将其用作长期能量载体(例如,在氧化还原液流电池中)是不实际的。如果每个介体分子存储的电子数可以增加一个数量级,则将具有可行的电解质系统,其可以在使用可再生电力输入的电化学装置中还原,然后引导到去耦氢(燃料)生产或用作氧化还原液流电池中的高能量密度电解质(直接能量存储),参见图1。这样的系统将有可能彻底改变可再生能源的存储。在这里,我们的目标是研究一系列新的聚氧乙烯酸盐作为氧化还原介质,每个分子可以减少至少18个电子。初步结果表明,一些POM可以可逆地还原和再氧化的水溶液中的至少这个数量的电子,只要浓度高,pH值保持低于一定的值。以此为出发点,我们将利用我们在构建基于聚氧乙烯酸盐的电化学设备方面的专业知识,开发出每体积电解质可以容纳更多电子的系统。在基础层面上,我们将应用一系列尖端技术来揭示这些超还原物种在水溶液中显着稳定性的根本原因,并开发解释这些物种性质的模型。我们将探索使用基于POM的新材料和器件架构,以生产具有最大灵活性和能量密度的储能系统。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decoupled electrolysis using a silicotungstic acid electron-coupled-proton buffer in a proton exchange membrane cell
  • DOI:
    10.1016/j.electacta.2019.135255
  • 发表时间:
    2020-01-20
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Chisholm, Greig;Cronin, Leroy;Symes, Mark D.
  • 通讯作者:
    Symes, Mark D.
Autonomous execution of highly reactive chemical transformations in the Schlenkputer
在 Schlenkputer 中自主执行高反应性化学转化
  • DOI:
    10.1038/s44286-023-00024-y
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bell N
  • 通讯作者:
    Bell N
Recent progress in CO2 reduction using bimetallic electrodes containing copper
  • DOI:
    10.1016/j.elecom.2022.107212
  • 发表时间:
    2022-01-13
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Dickinson, Hannah L. A.;Symes, Mark D.
  • 通讯作者:
    Symes, Mark D.
Synthesis, spectroscopic, electrochemical and photophysical properties of high band gap polymers for potential applications in semi-transparent solar cells.
  • DOI:
    10.1186/s13065-021-00751-4
  • 发表时间:
    2021-04-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Amin PO;Ketuly KA;Saeed SR;Muhammadsharif FF;Symes MD;Paul A;Sulaiman K
  • 通讯作者:
    Sulaiman K
An Artificial Intelligence that Discovers Unpredictable Chemical Reactions
发现不可预测化学反应的人工智能
  • DOI:
    10.26434/chemrxiv.12924968.v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Caramelli D
  • 通讯作者:
    Caramelli D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leroy Cronin其他文献

Photo-Driven Hydrogen Evolution Utilizing Vesicular Structure Consisting of Polyoxometalates
利用由多金属氧酸盐组成的囊泡结构进行光驱动析氢
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keita Nakanishi;Geoffrey Cooper;Laurie Points;Leanne Bloor;Masaaki Ohba;Leroy Cronin
  • 通讯作者:
    Leroy Cronin
Rotaxane mit anorganischen und organischen Baueinheiten
有机和有机平衡的轮烷
  • DOI:
    10.1002/ange.200902228
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Euan K. Brechin;Leroy Cronin
  • 通讯作者:
    Leroy Cronin
Hybrid Chemo-Robotic Systems for Embodied Chemical Evolution
用于具体化学进化的混合化学机器人系统
  • DOI:
    10.7551/978-0-262-32621-6-ch001
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Leroy Cronin
  • 通讯作者:
    Leroy Cronin
Reaction blueprints and logical control flow for parallelized chiral synthesis in the Chemputer
化学计算机中并行手性合成的反应蓝图和逻辑控制流程
  • DOI:
    10.1038/s41467-024-54238-6
  • 发表时间:
    2024-11-26
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Mindaugas Šiaučiulis;Christian Knittl-Frank;S. Hessam M. Mehr;Emma Clarke;Leroy Cronin
  • 通讯作者:
    Leroy Cronin
A Closed Loop Discovery Robot Driven by a Curiosity Algorithm Discovers Proto-Cells That Show Complex and Emergent Behaviours
由好奇心算法驱动的闭环发现机器人发现了表现出复杂和突发行为的原始细胞
  • DOI:
    10.26434/chemrxiv.6958334
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Grizou;L. Points;Abhishek Sharma;Leroy Cronin
  • 通讯作者:
    Leroy Cronin

Leroy Cronin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leroy Cronin', 18)}}的其他基金

Establishing Electrically Programmable Reaction Arrays as Universal Chemical Computers
建立电可编程反应阵列作为通用化学计算机
  • 批准号:
    EP/W001918/1
  • 财政年份:
    2022
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant
3DSynth: Design and fabrication of cartridges for digital chemical synthesis
3DSynth:数字化学合成卡盒的设计和制造
  • 批准号:
    EP/S017046/1
  • 财政年份:
    2019
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant
CHEMIFY: A System to Produce Universal Digital Chemical Synthesis
CHEMIFY:通用数字化学合成的系统
  • 批准号:
    EP/S030603/1
  • 财政年份:
    2019
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant
Chemobots: Digital-Chemical-Robotics to Convert Code to Molecules and Complex Systems
化学机器人:将代码转换为分子和复杂系统的数字化学机器人
  • 批准号:
    EP/S019472/1
  • 财政年份:
    2019
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant
Complex Chemical Systems Platform Exploring Inorganic Intelligence
复杂化学系统平台探索无机智能
  • 批准号:
    EP/R01308X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant
Advanced Mass Spectrometry Kit for Controlling Chemical Robots and Exploring Complex Chemical Systems
用于控制化学机器人和探索复杂化学系统的先进质谱套件
  • 批准号:
    EP/P00153X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant
A Digital DNA Nano Writer (DNA NanoFab)
数字 DNA 纳米写入器 (DNA NanoFab)
  • 批准号:
    EP/L015668/1
  • 财政年份:
    2014
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant
Programmable 'Digital' Synthesis for Discovery & Scale-up of Molecules, Clusters & Nanomaterials
用于发现的可编程“数字”合成
  • 批准号:
    EP/L023652/1
  • 财政年份:
    2014
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant
14-PSIL: Plug and Play Photosynthesis for RuBisCO Independent Fuels
14-PSIL:RuBisCO 独立燃料的即插即用光合作用
  • 批准号:
    BB/M011267/1
  • 财政年份:
    2014
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant
Energy and the Physical Sciences: Hydrogen Production using a Proton Electron Buffer
能源和物理科学:使用质子电子缓冲器生产氢气
  • 批准号:
    EP/K023004/1
  • 财政年份:
    2013
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Research Grant

相似国自然基金

2C型蛋白磷酸酶REDUCED DORMANCY 5通过激酶-磷酸酶蛋白复合体调控种子休眠的分子机制
  • 批准号:
    32000250
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
  • 批准号:
    2341000
  • 财政年份:
    2024
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
Process design of new reduced activation ferrite martensite (RAFM) steels for nuclear fusion reactors
核聚变反应堆用新型低活化铁素体马氏体(RAFM)钢的工艺设计
  • 批准号:
    EP/X030652/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Fellowship
CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
  • 批准号:
    2340266
  • 财政年份:
    2024
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Standard Grant
Implementing VVC codec in WebRTC video conferencing and Ultra Low Latency CDN for reduced network footprint
在 WebRTC 视频会议和超低延迟 CDN 中实施 VVC 编解码器,以减少网络占用
  • 批准号:
    10114427
  • 财政年份:
    2024
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Collaborative R&D
ENIGMATEC: Efficient Netshape manufacturInG for reduced MAterials waste in production or ThermoElectric Coolers
ENIGMATEC:高效 Netshape 制造,减少生产或热电冷却器中的材料浪费
  • 批准号:
    10081270
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Collaborative R&D
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Operating Grants
Elucidation of the mechanisms of Blood-testis barrier permeability and reduced sperm motility by platinum nanoparticles via extracellular vesicles
阐明铂纳米颗粒通过细胞外囊泡降低血睾屏障通透性和降低精子活力的机制
  • 批准号:
    23H03548
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Acceleration of High-Fidelity Numerical Simulation for Unsteady Flows with Low Reduced Frequency
低降频非定常流高保真数值模拟加速
  • 批准号:
    23KJ0528
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Liver Targeting Dihydroquinolizinone (DHQ) Molecules as Hepatitis B Virus Antivirals with Reduced Toxicity
肝脏靶向二氢喹嗪酮 (DHQ) 分子作为乙型肝炎病毒抗病毒药物,毒性降低
  • 批准号:
    10593566
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
Optimisation of multi-rotor wind turbines combined with advanced design techniques to enable lower environmental impacts and reduced cost of energy.
多转子风力涡轮机的优化与先进的设计技术相结合,可降低环境影响并降低能源成本。
  • 批准号:
    2894272
  • 财政年份:
    2023
  • 资助金额:
    $ 71.62万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了