Active Learning for Computational Polymorph Landscape Analysis
计算多晶型景观分析的主动学习
基本信息
- 批准号:EP/S015418/1
- 负责人:
- 金额:$ 31.99万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research will develop advanced computational methods for predicting the possible crystal structures of drug-like molecules. The work is motivated by the importance of anticipating the occurrence of polymorphism, where a molecule can crystallise in more than one crystal structure, depending on the conditions used for its crystallisation. In the context of pharmaceutical materials, we must know when polymorphs exist that we have not yet characterised. These present a risk related to property control; a change in crystal structure can dramatically alter important properties of a crystalline drug, affecting its processing, tabletting and bioavailability. Hence, there has been a huge investment in crystal structure prediction methods. Predicted structures could guide experimental screening - where to focus effort and, in the long run, what experimental variables to vary to maximise likelihood of isolating new structures. Structure prediction has progressed impressively but still not made the expected impact on assessing risk. A root cause is the problem of over-prediction. Current methods always predict many competing crystal forms, most of which are never observed. Accordingly all candidate drug molecules appear to have significant uncertainly as to expected extent of polymorphism and this adversely impacts risk analysis. The root of the problem is that the underlying lattice energy surface, on which local minima represent possible structures, is extremely complex and current methods for predicting polymorphism do not provide a sufficiently detailed description of this energy surface. We will develop the use of statistical learning methods to guide crystal structure calculations to efficiently map out the global features of lattice energy surfaces in a way that is not possible using current computational methods. Two lines of study are proposed: to improve the fidelity of energetic assessment and, more importantly, to map the energy landscape of structures more globally. A starting point is to develop advanced statistical learning methods for correcting approximate computational models that are used for assessing lattice energies of predicted crystal structures. Our goal is to reduce the uncertainty in ranking of predicted structures at a controlled computational cost. We will then move to a completely unexplored problem: learning more detailed features of the lattice energy surface, such as the depth, shape and connectivity of energy basins. Key to this work is the development of multi-fidelity (multiple models of known accuracy and computational cost) and multi-objective Bayesian optimisation approaches to make use of the hierarchical of energy models (a series of approximate energy models with known, ordered accuracy) used in crystal structure prediction.The objective is to judge the thermodynamic robustness and kinetic accessibility of individual predicted crystal structures and address the polymorphism over-prediction problem. This is completely new in the area and can be transformative in guiding experimental screening.Thus, the vision is that active learning methods will guide the computer simulations that, in turn, will provide guidance to experimental polymorph screening.
拟议的研究将开发先进的计算方法来预测药物样分子的可能晶体结构。这项工作的动机是预测多态性发生的重要性,其中一个分子可以结晶在一个以上的晶体结构,这取决于其结晶所使用的条件。在制药材料方面,我们必须知道何时存在我们尚未表征的多晶型物。这些存在与性质控制相关的风险;晶体结构的变化可显著改变晶体药物的重要性质,影响其加工、压片和生物利用度。因此,在晶体结构预测方法上进行了巨大的投资。预测的结构可以指导实验筛选-在哪里集中精力,以及从长远来看,改变什么实验变量以最大限度地提高分离新结构的可能性。结构预测已经取得了令人印象深刻的进展,但仍然没有取得预期的影响,评估风险。一个根本原因是过度预测的问题。目前的方法总是预测许多竞争的晶体形式,其中大多数从未被观察到。因此,所有候选药物分子似乎对预期的多态性程度具有显著的不确定性,这对风险分析产生了不利影响。问题的根源在于潜在的晶格能表面(局部最小值代表可能的结构)是极其复杂的,并且用于预测多晶型的当前方法没有提供对该能表面的足够详细的描述。我们将开发使用统计学习方法来指导晶体结构计算,以有效地绘制出晶格能量表面的全局特征,这是使用当前计算方法不可能实现的。提出了两条研究路线:提高能量评估的保真度,更重要的是,更全球化地绘制结构的能量景观。一个出发点是开发先进的统计学习方法,用于校正用于评估预测晶体结构的晶格能的近似计算模型。我们的目标是在控制计算成本的情况下,减少预测结构排序的不确定性。然后,我们将转向一个完全未探索的问题:学习晶格能量表面的更详细的特征,例如能量盆地的深度,形状和连通性。这项工作的关键是发展多保真度(已知精度和计算成本的多个模型)和多目标贝叶斯优化方法,以利用能量模型的层次结构(一系列近似的能量模型,精确度)用于晶体结构预测。目标是判断各个预测晶体结构的热力学稳健性和动力学可及性,并解决多态性过度预测问题这在该领域是全新的,并且可以在指导实验筛选方面具有变革性。因此,我们的愿景是,主动学习方法将指导计算机模拟,从而为实验多晶型筛选提供指导。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graeme Day其他文献
Graeme Day的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graeme Day', 18)}}的其他基金
A Supramolecular Gel Phase Crystallisation Strategy
超分子凝胶相结晶策略
- 批准号:
EP/R01339X/1 - 财政年份:2018
- 资助金额:
$ 31.99万 - 项目类别:
Research Grant
Porous Organic Crystals: From Prediction to Synthesis and Function
多孔有机晶体:从预测到合成和功能
- 批准号:
EP/K018132/1 - 财政年份:2013
- 资助金额:
$ 31.99万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 31.99万 - 项目类别:
Research Grant
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
- 批准号:
2330737 - 财政年份:2024
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
- 批准号:
2337678 - 财政年份:2024
- 资助金额:
$ 31.99万 - 项目类别:
Continuing Grant
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 31.99万 - 项目类别:
Predicting emergence risk of future zoonotic viruses through computational learning
通过计算学习预测未来人畜共患病毒的出现风险
- 批准号:
MR/X019616/1 - 财政年份:2024
- 资助金额:
$ 31.99万 - 项目类别:
Fellowship
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2318758 - 财政年份:2023
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
CAREER: Trustworthy and Robust Federated Learning for Computational Healthcare
职业:用于计算医疗保健的值得信赖且强大的联邦学习
- 批准号:
2238743 - 财政年份:2023
- 资助金额:
$ 31.99万 - 项目类别:
Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
- 批准号:
2242084 - 财政年份:2023
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
Coupling PDE-Based Computational Inversion and Learning Via Weighted Optimization
通过加权优化耦合基于偏微分方程的计算反演和学习
- 批准号:
2309802 - 财政年份:2023
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant
CCSS: Uncertainty-Aware Computational Imaging in the Wild: a Bayesian Deep Learning Approach in the Latent Space
CCSS:野外不确定性感知计算成像:潜在空间中的贝叶斯深度学习方法
- 批准号:
2348046 - 财政年份:2023
- 资助金额:
$ 31.99万 - 项目类别:
Standard Grant














{{item.name}}会员




