Zero Power, Large Area Rail Track Monitoring
零功耗、大面积铁轨监控
基本信息
- 批准号:EP/S024840/1
- 负责人:
- 金额:$ 176.28万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The delivery of efficient and safe railway operations is considered of vital importance to the UK's economy and society. Currently the UK has 4,000 trains using 20,000 miles of track and 1.7 billion passenger journeys annually. 400,000 tonnes of freight each day are transported over rail and these numbers are forecast to increase. Delays, unplanned disruption or reduction in availability due to unplanned maintenance have serious repercussions on the mobility of passengers and freight. Railway track and rolling stock interact with each other, forming a complex dynamic system which leads to structural degradation of railway assets with time. It is therefore of utmost importance that events and mechanisms causing damage initiation and propagation in the railway track are detected in real time and evaluated for translating events and mechanisms into predictive and preventive maintenance plans. In 2017 the UK Government set up a strategic vision for rail, for the short- and long-term, to address the need for: 'a more reliable, efficient, modern railway in 2019-24; a step change for railway (2024-2029); a world-class railway beyond 2030'.One of the grand challenges for the industry has been inspecting the track and quantifying its damage on such a vast scale. Observations need to be autonomous and sustainable, defects detected at an early stage, and maintenance work optimised, to reduce the risk of failure and to increase availability, safety and reliability. One powerful means of inspection is to develop permanently installed, self-powered sensors, e.g. accelerometers, strain gauges and acoustic emission (AE) sensors on the tracks, which measure track deflection, vibration, and wheel-rail track interactions, and are wirelessly connected to an operation and management centre with automated data processing capability. The development of such self-powered, wide area rail track monitoring will lead to radical change in the management of railway infrastructure, and considerably enhanced efficiencies, economies and adaptability, improving the competitiveness of our whole railway system. Greater connectivity and sensor coverage along tracks which require no mains power or batteries for energy supply, eliminating the costs for cabling and battery replacement, and minimum gateway installations, are critical for the success of industry adoptions.The principal novelty of this research is to develop cross-cutting, bespoke, deployable technologies and an associated demonstrator of a zero power, large geographical area rail track monitoring system. Current technological capabilities do not permit such scaling-up for high connectivity and wide area coverage, e.g. the entire UK rail network. This project will fill this technological gap by developing an integrated whole-system approach from energy harvesting (EH), power management, low power wide area networks (LPWAN), remote condition monitoring to data explanation. In the future, it will enable Network Rail to implement efficient predictive and preventive maintenance planning, thereby improving the reliability and availability of the railway, which in turn promises to promote UK economic growth through increased mobility. The project's research outputs are expected to transform rail track monitoring capability in the 21st century, in the UK and internationally.This research will build upon the University of Exeter's track record of EH powered wireless sensor systems, and high performance computing and networking, and the University of Birmingham's expertise in rail track condition monitoring. The research will be supported by Network Rail and other industrial partners to ensure its impact readiness. The project partners are: three Divisions from Network Rail of Track Renewals (Birmingham) and Infrastructure Projects and Telecom (Milton Keynes), Quattro (London) and Swiss Approval International Group of Companies (Lanarkshire).
高效、安全的铁路运营对英国的经济和社会至关重要。目前,英国有4000列火车,使用2万英里的轨道,每年运送旅客17亿人次。每天有40万吨货物通过铁路运输,预计这些数字还会增加。由于计划外维修造成的延误、计划外中断或可用性减少对乘客和货物的流动性产生严重影响。铁路轨道与车辆相互作用,形成复杂的动力系统,导致铁路资产的结构随时间退化。因此,在铁路轨道上实时检测和评估导致损坏发生和传播的事件和机制,以将事件和机制转化为预测性和预防性维护计划,这一点至关重要。2017年,英国政府制定了铁路的短期和长期战略愿景,以满足以下需求:在2019-24年实现更可靠、更高效、更现代化的铁路;铁路的阶段性转变(2024-2029);2030年后建成世界级铁路。该行业面临的最大挑战之一是对赛道进行检查,并对如此大规模的损害进行量化。观察需要是自主和可持续的,在早期阶段检测缺陷,并优化维护工作,以减少故障风险,提高可用性、安全性和可靠性。一种强大的检测手段是开发永久安装的自供电传感器,例如轨道上的加速度计、应变计和声发射(AE)传感器,这些传感器可以测量轨道挠度、振动和轮轨轨道相互作用,并与具有自动数据处理能力的操作和管理中心无线连接。这种自供电、广域铁路轨道监控的发展将导致铁路基础设施管理的根本性变化,并大大提高效率、经济性和适应性,提高整个铁路系统的竞争力。不需要主电源或电池供电的轨道上更大的连接和传感器覆盖范围,消除了布线和电池更换的成本,以及最小的网关安装,对于行业采用的成功至关重要。这项研究的主要新颖之处在于开发跨领域、定制、可部署的技术,以及相关的零功率、大地理区域铁路轨道监测系统的演示。目前的技术能力不允许对高连接性和广域覆盖进行这种扩展,例如整个英国铁路网。该项目将通过开发从能量收集(EH)、电源管理、低功耗广域网(LPWAN)、远程状态监测到数据解释的集成全系统方法来填补这一技术空白。在未来,它将使网络铁路实施有效的预测性和预防性维护计划,从而提高铁路的可靠性和可用性,这反过来又有望通过增加流动性来促进英国的经济增长。该项目的研究成果有望在21世纪改变英国和国际上的铁路轨道监测能力。这项研究将建立在埃克塞特大学在EH供电无线传感器系统、高性能计算和网络方面的记录,以及伯明翰大学在铁路轨道状况监测方面的专业知识的基础上。该研究将得到网络铁路和其他工业合作伙伴的支持,以确保其影响准备就绪。项目合作伙伴是:轨道更新网络铁路(伯明翰)和基础设施项目和电信(米尔顿凯恩斯),Quattro(伦敦)和瑞士批准国际集团公司(拉纳克郡)的三个部门。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-Powered and Self-Configurable Active Rectifier Using Low Voltage Controller for Wide Output Range Energy Harvesters
使用低压控制器的自供电和自配置有源整流器,用于宽输出范围能量收集器
- DOI:10.1109/tpel.2022.3165652
- 发表时间:2022
- 期刊:
- 影响因子:6.7
- 作者:Chew Z
- 通讯作者:Chew Z
Broadband energy harvesting by nonlinear magnetic rolling pendulum with subharmonic resonance
- DOI:10.1016/j.apenergy.2019.113822
- 发表时间:2019-12-01
- 期刊:
- 影响因子:11.2
- 作者:Kuang, Yang;Hide, Rosalie;Zhu, Meiling
- 通讯作者:Zhu, Meiling
Strongly coupled piezoelectric energy harvesters: Finite element modelling and experimental validation
- DOI:10.1016/j.enconman.2020.112855
- 发表时间:2020-06-01
- 期刊:
- 影响因子:10.4
- 作者:Kuang, Yang;Chew, Zheng Jun;Zhu, Meiling
- 通讯作者:Zhu, Meiling
Energy Savvy Network Joining Strategies for Energy Harvesting Powered TSCH Nodes
- DOI:10.1109/tii.2020.3005196
- 发表时间:2021-02
- 期刊:
- 影响因子:12.3
- 作者:Z. Chew;Tingwen Ruan;M. Zhu
- 通讯作者:Z. Chew;Tingwen Ruan;M. Zhu
Strongly coupled piezoelectric energy harvesters: Optimised design with over 100 mW power, high durability and robustness for self-powered condition monitoring
- DOI:10.1016/j.enconman.2021.114129
- 发表时间:2021-06
- 期刊:
- 影响因子:10.4
- 作者:Yang Kuang;Z. Chew;John Dunville;J. Sibson;M. Zhu
- 通讯作者:Yang Kuang;Z. Chew;John Dunville;J. Sibson;M. Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meiling Zhu其他文献
Role of ferroptosis in Parkinson’s disease and intervention mechanism of acupuncture and moxibustion
铁死亡在帕金森病中的作用及针灸干预机制
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xiaoqian Hao;Shu;Qinglian Li;Da Gao;Xiaoling Wang;Qizhang Wang;Meiling Zhu - 通讯作者:
Meiling Zhu
Biomass allocation and allometric growth analysis of emPinus yunnanensis/em under different mixed nitrogen and phosphorus fertilization conditions
不同氮磷配施条件下云南松(Pinus yunnanensis)生物量分配及异速生长分析
- DOI:
10.1016/j.indcrop.2025.121226 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:6.200
- 作者:
Meiling Zhu;Guangpeng Tang;Sunling Li;Lin Chen;Shi Chen;Yulan Xu;Nianhui Cai - 通讯作者:
Nianhui Cai
Antibacterial peptide encapsulation and sustained release from chitosan-based delivery system. European Polymer Journal
抗菌肽封装并从基于壳聚糖的递送系统中持续释放。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:6
- 作者:
Meiling Zhu;Xiaole Hu;Hongsheng Liu;Jinhuang Tian;Jinguang Yang;Lihua Li;Binghong Luo;Changren Zhou;Lu Lu - 通讯作者:
Lu Lu
Oxidation temperature-dependency of relative dielectric constant and reflective characteristics of lignite and bituminous coal in the presence of very high frequency to ultra-high frequency bands
褐煤和烟煤在甚高频到超高频波段下相对介电常数的氧化温度依赖性及反射特性
- DOI:
10.1016/j.fuel.2025.134822 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:7.500
- 作者:
Qi Liao;Meiling Zhu;Kejiang Lei;Huijie Wei;Minbo Zhang;Haoran Wang;Jin Xu - 通讯作者:
Jin Xu
Homogeneous Cobalt Catalyzed Reductive Formylation of N-heteroarenes with Formic Acid
- DOI:
10.1016/j.jcat.2022.11.006. - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Meiling Zhu;Haitao Tian;Sanxia Chen;Wenxuan Xue;Yanhong Wang;Hongcheng Lu;Ting Li;Feng Chen;Conghui Tang - 通讯作者:
Conghui Tang
Meiling Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meiling Zhu', 18)}}的其他基金
Discovering a Sustainable Power Solution for Next Generation 5G Railway Communication
探索下一代 5G 铁路通信的可持续电源解决方案
- 批准号:
EP/X016498/1 - 财政年份:2023
- 资助金额:
$ 176.28万 - 项目类别:
Research Grant
En-ComE: Energy Harvesting Powered Wireless Monitoring Systems Based on Integrated Smart Composite Structures and Energy-Aware Architecture
En-ComE:基于集成智能复合结构和能源感知架构的能量收集供电无线监控系统
- 批准号:
EP/K020331/1 - 财政年份:2014
- 资助金额:
$ 176.28万 - 项目类别:
Research Grant
SMARTER: Smart Multifunctional ARchitecture & Technology for Energy aware wireless sensoRs
更智能:智能多功能架构
- 批准号:
EP/K017950/2 - 财政年份:2014
- 资助金额:
$ 176.28万 - 项目类别:
Research Grant
SMARTER: Smart Multifunctional ARchitecture & Technology for Energy aware wireless sensoRs
更智能:智能多功能架构
- 批准号:
EP/K017950/1 - 财政年份:2012
- 资助金额:
$ 176.28万 - 项目类别:
Research Grant
相似国自然基金
基于切平面受限Power图的快速重新网格化方法
- 批准号:62372152
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多约束Power图快速计算算法研究
- 批准号:61972128
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
网格曲面上质心Power图的快速计算及应用
- 批准号:61772016
- 批准年份:2017
- 资助金额:46.0 万元
- 项目类别:面上项目
离散最优传输问题,闵可夫斯基问题和蒙奇-安培方程中的变分原理和Power图
- 批准号:11371220
- 批准年份:2013
- 资助金额:50.0 万元
- 项目类别:面上项目
云计算环境下数据中心的power capping关键问题研究
- 批准号:61272460
- 批准年份:2012
- 资助金额:81.0 万元
- 项目类别:面上项目
基于信道Time/Power度量指标的TOA测距误差模型及其应用研究
- 批准号:61172049
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Power MEMS 微转子-轴承系统的非线性动力学研究
- 批准号:10872031
- 批准年份:2008
- 资助金额:36.0 万元
- 项目类别:面上项目
准气体动力循环超高能量密度Power MEMS的研究
- 批准号:50575231
- 批准年份:2005
- 资助金额:28.0 万元
- 项目类别:面上项目
冷热源Power MEMS应用基础研究
- 批准号:50275135
- 批准年份:2002
- 资助金额:31.0 万元
- 项目类别:面上项目
相似海外基金
Flexible and modular large battery systems for safe on-board integration and operation of electric power, demonstrated in multiple type of ships (FLEXSHIP)
灵活的模块化大型电池系统,用于安全的船上电力集成和运行,已在多种类型的船舶上进行了演示 (FLEXSHIP)
- 批准号:
10063837 - 财政年份:2023
- 资助金额:
$ 176.28万 - 项目类别:
EU-Funded
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
- 批准号:
2333951 - 财政年份:2023
- 资助金额:
$ 176.28万 - 项目类别:
Standard Grant
SBIR Phase I: A hybrid phasor/waveform simulation tool for the accurate and efficient simulation of large electric power systems with high shares of inverter-based resources
SBIR 第一阶段:一种混合相量/波形仿真工具,用于精确高效地仿真具有高份额逆变器资源的大型电力系统
- 批准号:
2321329 - 财政年份:2023
- 资助金额:
$ 176.28万 - 项目类别:
Standard Grant
CAREER: A Decentralized Optimization Framework for Next-Gen Transportation and Power Systems with Large-scale Transportation Electrification
职业生涯:具有大规模交通电气化的下一代交通和电力系统的去中心化优化框架
- 批准号:
2237413 - 财政年份:2023
- 资助金额:
$ 176.28万 - 项目类别:
Standard Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
- 批准号:
2333950 - 财政年份:2023
- 资助金额:
$ 176.28万 - 项目类别:
Standard Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
- 批准号:
2333949 - 财政年份:2023
- 资助金额:
$ 176.28万 - 项目类别:
Standard Grant
CAREER: Novel Direct Current Power Distribution for Large-scale Electrified Transportation Charging
职业:用于大规模电气化交通充电的新型直流配电
- 批准号:
2239169 - 财政年份:2023
- 资助金额:
$ 176.28万 - 项目类别:
Continuing Grant
The AGN - galaxy connection: utilising the power of large sky surveys
AGN - 星系连接:利用大型巡天的力量
- 批准号:
2779659 - 财政年份:2022
- 资助金额:
$ 176.28万 - 项目类别:
Studentship
Harnessing the power of machine learning algorithms for the detection of marine mammal species in large acoustic datasets
利用机器学习算法的力量来检测大型声学数据集中的海洋哺乳动物物种
- 批准号:
2792769 - 财政年份:2022
- 资助金额:
$ 176.28万 - 项目类别:
Studentship
Extremely Low-Power Half-Flux-Quantum Circuits using Novel, Large Inductance Induced by Magnetic Josephson Junctions
使用磁性约瑟夫森结感应的新型大电感的极低功耗半通量量子电路
- 批准号:
22H01548 - 财政年份:2022
- 资助金额:
$ 176.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




