MEGA-FLIM: quantum technologies for megapixel time-resolved imaging and control across biological scales
MEGA-FLIM:用于跨生物尺度的百万像素时间分辨成像和控制的量子技术
基本信息
- 批准号:EP/T002123/1
- 负责人:
- 金额:$ 238.92万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Embryos, organs and tumours are composed of many cells, which interact with each other and communicate across distances of several cells. While it is routine to study single cells under a microscope, it is much more difficult to study collectives due to their size, light scattering properties and complexity. Fluorescence lifetime imaging (FLIM) and FRET (Forster resonance energy transfer) use the principles of energy transfer that occur when a light particle (photon) jumps from an excited fluorescent donor molecule to a nearby acceptor, thus changing the fluorescence lifetime of the donor. FLIM is used to measure close molecular interactions inside of living cells by measuring this lifetime change. We will combine physics, engineering, computation and biology to build a new light microscopic system, with extremely high spatial and temporal resolution. We call our system MEGA-FLIM and we will use it to study larger cell collectives of cells to discover how cells communicate and organise in response to both mechanical and chemical signals. MEGA-FLIM will allow much faster collection of light signals across a much larger field than previously possible. We will also develop technology to use light to control cell behaviour across these collectives using the technique called optogenetics. Our unique team of optical physicists, bioengineers and biologists is ideally placed to break down current barriers, leading to landmark discovery in each of these fields.Why do we need a new FLIM microscope system?Commercial systems are lacking that allow, simultaneously: - fast acquisition (0.1 second or faster) so as to allow real-time measurements in live cells or embryos- across a widefield area with high resolution (1 million pixels or higher), so as to allow imaging of the full cell environment and large collectives- with high time resolution (50-100 pico seconds), so as to allow precise discrimination of lifetimes- two-photon excitation, so as to allow precise full 3D reconstruction of cell collectives.- widefield optogenetic activation (light-controlled cell behaviour), so as to allow study of the dynamics of collectives in the presence of complex activation stimuli that act across multiple sites.What problems will this new system solve and what impact will it have?-MEGA FLIM will provide a system that will allow us to interrogate living systems at molecular resolution and discover how cells collectively signal using both chemical and mechanical signals to steer when they migrate. This kind of steering allows cells to recognise each other and other cell types and to form complex patterns in 3 dimensions (like in an organ or an embryo).-Our new system will be of great commercial interest, as it will advance capabilities in imaging and optogenetic control of cell behaviour with light.-By building a system whereby we can discover new pathways governing how cells behave in collectives, we will gain the ability to reliably and predictably control collective cell behaviour. This discipline, known as synthetic biology, is highly desirable for medical and commercial use in building organ/tumour-on-chip systems or creating physiologically relevant systems to use in drug discovery.
胚胎、器官和肿瘤由许多细胞组成,这些细胞相互作用,并跨越几个细胞的距离进行通信。虽然在显微镜下研究单个细胞是常规的,但由于它们的大小,光散射特性和复杂性,研究集体要困难得多。荧光寿命成像(FLIM)和FRET(福斯特共振能量转移)使用当光粒子(光子)从激发的荧光供体分子跳跃到附近的受体时发生的能量转移的原理,从而改变供体的荧光寿命。FLIM用于通过测量这种寿命变化来测量活细胞内的紧密分子相互作用。我们将联合收割机物理学、工程学、计算学和生物学相结合,建立一个新的光学显微系统,具有极高的空间和时间分辨率。我们将我们的系统称为MEGA-FLIM,我们将用它来研究更大的细胞群体,以发现细胞如何响应机械和化学信号进行通信和组织。MEGA-FLIM将允许比以前更快地收集更大范围内的光信号。我们还将开发技术,使用光遗传学技术,利用光来控制这些群体的细胞行为。我们由光学物理学家、生物工程师和生物学家组成的独特团队是打破现有障碍的理想选择,在每个领域都有里程碑式的发现。为什么我们需要新的FLIM显微镜系统?缺乏同时允许以下内容的商业系统:- 快速采集(0.1秒或更快),以便在活细胞或胚胎中进行实时测量-在宽视场区域内以高分辨率进行测量(100万像素或更高),以便能够以高时间分辨率对全细胞环境和大型集体成像(50-100皮科),以便允许精确区分寿命-双光子激发,以便允许精确的全3D重建细胞集合。宽场光遗传学激活(光控细胞行为),从而允许在多个位点作用的复杂激活刺激存在下研究集体的动态。这个新系统将解决什么问题?它将产生什么影响?- MEGA FLIM将提供一个系统,使我们能够以分子分辨率询问生命系统,并发现细胞在迁移时如何使用化学和机械信号共同发出信号。这种转向允许细胞识别彼此和其他细胞类型,并在三维中形成复杂的模式(如器官或胚胎)。我们的新系统将具有巨大的商业利益,因为它将提高用光对细胞行为进行成像和光遗传学控制的能力。通过建立一个系统,我们可以发现控制细胞集体行为的新途径,我们将获得可靠和可预测地控制集体细胞行为的能力。这门学科被称为合成生物学,在构建器官/肿瘤芯片系统或创建用于药物发现的生理学相关系统的医疗和商业用途中非常理想。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-shot time-folded fluorescence lifetime imaging.
- DOI:10.1073/pnas.2214617120
- 发表时间:2023-04-18
- 期刊:
- 影响因子:11.1
- 作者:Kapitany, Valentin;Zickus, Vytautas;Fatima, Areeba;Carles, Guillem;Faccio, Daniele
- 通讯作者:Faccio, Daniele
CYRI/ Fam49 Proteins Represent a New Class of Rac1 Interactors.
- DOI:10.1080/19420889.2019.1643665
- 发表时间:2019-01-01
- 期刊:
- 影响因子:0
- 作者:Whitelaw, Jamie A;Lilla, Sergio;Machesky, Laura M
- 通讯作者:Machesky, Laura M
Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation.
荧光寿命成像,具有百像Spad摄像头和神经网络寿命估计。
- DOI:10.1038/s41598-020-77737-0
- 发表时间:2020-12-02
- 期刊:
- 影响因子:4.6
- 作者:Zickus V;Wu ML;Morimoto K;Kapitany V;Fatima A;Turpin A;Insall R;Whitelaw J;Machesky L;Bruschini C;Faccio D;Charbon E
- 通讯作者:Charbon E
Enhanced-resolution fluorescence lifetime imaging from multiple sensor data fusion
来自多个传感器数据融合的增强分辨率荧光寿命成像
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Fatima A.
- 通讯作者:Fatima A.
Super-resolution time-resolved imaging using computational sensor fusion.
- DOI:10.1038/s41598-021-81159-x
- 发表时间:2021-01-18
- 期刊:
- 影响因子:4.6
- 作者:Callenberg C;Lyons A;Brok DD;Fatima A;Turpin A;Zickus V;Machesky L;Whitelaw J;Faccio D;Hullin MB
- 通讯作者:Hullin MB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Machesky其他文献
381 ABERRANT EXTRACELLULAR SIGNAL-REGULATED PROTEIN KINASE 5 (ERK5) SIGNALLING PROMOTES CELLULAR MOTILITY AND INVASION IN PROSTATE CARCINOGENESIS
- DOI:
10.1016/j.juro.2010.02.449 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Alison Ramsay;Stuart McCracken;Rosie Morland;Janis Fleming;Laura Machesky;Xinzi Yu;Dylan Edwards;Robert Nuttall;Morag Seywright;Evan Keller;Hing Leung - 通讯作者:
Hing Leung
Going on a (Membrane) Bender to the F-BAR
- DOI:
10.1016/j.devcel.2010.11.023 - 发表时间:
2011-01-18 - 期刊:
- 影响因子:
- 作者:
Laura Machesky - 通讯作者:
Laura Machesky
Laura Machesky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Machesky', 18)}}的其他基金
Finding new insights into cancer metastasis: Linking cell migration to metabolic energy flux
寻找癌症转移的新见解:将细胞迁移与代谢能量通量联系起来
- 批准号:
MR/R017255/1 - 财政年份:2018
- 资助金额:
$ 238.92万 - 项目类别:
Research Grant
Actin assembly in filopodia and lamellipodia: Regulation of the Arp2/3 Complex by Scar and IRSp53
丝状伪足和片状伪足中的肌动蛋白组装:Scar 和 IRSp53 对 Arp2/3 复合体的调节
- 批准号:
G117/569/2 - 财政年份:2007
- 资助金额:
$ 238.92万 - 项目类别:
Fellowship
相似国自然基金
基于超分辨 FLIM 方法的活细胞基因组
DNA 压缩的相分离监测
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
利用FLIM方法表征海洋双壳贝类的微塑料胁迫响应机制
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
建立荧光寿命显微镜(FLIM)方法评估活体标本三维亚细胞空间分子/生化反应
- 批准号:22ZR1441200
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于FLIM/PA复合成像精准监控的二维黑磷纳米片靶向肿瘤化疗和热疗机制研究
- 批准号:61805161
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
利用双光子FLIM技术动态监测镉对紫贻贝的毒理效应过程
- 批准号:41806142
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于超分辨FLIM方法的活细胞基因编辑动态检测
- 批准号:31771584
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
利用STORM和FLIM方法对基因组DNA压缩进行多模态光学表征
- 批准号:61705142
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于上转换荧光成像协同FLIM监控的纳米光动力精准靶向治疗研究
- 批准号:61605130
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于AOD-FLIM/CARS多模光学平台监测单个活细胞内RNA合成过程
- 批准号:61405123
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Single Molecule sensitive CLSM for FLIM FRET
用于 FLIM FRET 的单分子敏感 CLSM
- 批准号:
519922049 - 财政年份:2023
- 资助金额:
$ 238.92万 - 项目类别:
Major Research Instrumentation
Multiplex Imaging of Brain Activity and Plasticity with Optimized FRET/FLIM-based Sensors
使用基于 FRET/FLIM 的优化传感器对大脑活动和可塑性进行多重成像
- 批准号:
10516813 - 财政年份:2023
- 资助金额:
$ 238.92万 - 项目类别:
Two-photon-confocal microscope incl. FLIM detectors
包括 FLIM 探测器的双光子共焦显微镜
- 批准号:
518559509 - 财政年份:2023
- 资助金额:
$ 238.92万 - 项目类别:
Major Research Instrumentation
Fluorescence Lifetime Imaging (FLIm): a method to evaluate colon inflammation in vivo
荧光寿命成像(FLIm):一种体内评估结肠炎症的方法
- 批准号:
10697393 - 财政年份:2022
- 资助金额:
$ 238.92万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10570189 - 财政年份:2022
- 资助金额:
$ 238.92万 - 项目类别:
Translational Photonic Fingerprinting- STELLARIS FALCON FLIM CONFOCAL
平移光子指纹识别 - STELLARIS FALCON FLIM CONFOCAL
- 批准号:
MR/X013499/1 - 财政年份:2022
- 资助金额:
$ 238.92万 - 项目类别:
Research Grant
Development of live cell FLIM-FRET to Characterize Protein-DNA Interactions During DNA Damage Repair
开发活细胞 FLIM-FRET 来表征 DNA 损伤修复过程中的蛋白质-DNA 相互作用
- 批准号:
RGPIN-2020-06642 - 财政年份:2022
- 资助金额:
$ 238.92万 - 项目类别:
Discovery Grants Program - Individual
Confocal Laser Scanning Microscope (CLSM) with Fluorescence Lifetime Imaging Microscopy (FLIM)
具有荧光寿命成像显微镜 (FLIM) 的共焦激光扫描显微镜 (CLSM)
- 批准号:
497669232 - 财政年份:2022
- 资助金额:
$ 238.92万 - 项目类别:
Major Research Instrumentation
Fluorescence Lifetime Imaging (FLIm): a method to evaluate colon inflammation in vivo
荧光寿命成像(FLIm):一种体内评估结肠炎症的方法
- 批准号:
10511983 - 财政年份:2022
- 资助金额:
$ 238.92万 - 项目类别:
Structured light temporal focusing depth-resolved wide-field FLIM-FRET for in vivo synaptic imaging
用于体内突触成像的结构光时间聚焦深度分辨宽视场 FLIM-FRET
- 批准号:
10467534 - 财政年份:2022
- 资助金额:
$ 238.92万 - 项目类别: