Low-Dimensional Electronic Device Fabrication at Low Cost over Large Areas

大面积低成本低维电子器件制造

基本信息

  • 批准号:
    EP/T004754/1
  • 负责人:
  • 金额:
    $ 32.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

There is a general rule of thumb that the cost of manufacturing doubles every time the precision is improved by a factor of ten. Crudely, this is why it costs billions of pounds to set up a fabrication plant to manufacture microprocessors, where the physical size of the transistors being manufactured is on the length scale of a few nanometre, compared with the cost of setting up a facility to manufacture printed circuit boards which sufficiently cheap to be widely available, but features are on the scale of hundreds of micrometers.There are cases of where this rule can be broken. One is in the use of low-dimensional materials which naturally form on a nanometre length scale. An example of this is graphene, which has received a lot of attention in recent years. It naturally forms in a two-dimensional sheet of carbon atoms, and so does not need to be 'machined' to achieve a nanometre-scale thickness. Such 'bottom-up' processes achieve high resolution at very low cost, which is one reason for the interest. However, they still require electrical contacts to be made to the materials to define a complete device. Ideally, we would like to use only a small quantity of these materials, for example by patterning two metal electrodes separated by only a few nanometre with the low-dimensional material (e.g. graphene) inside the nanogap. As the patterning of the metal one this length scale requires a high resolution process, the cost becomes prohibitive again.This project aims to tackle this manufacturing problem directly by combining an emerging technique called 'adhesion lithography' with the growth of low-dimensional materials to create the structures required to make real electronic devices using these materials. Adhesion lithography uses self-assembled monolayers (SAM) to control how well different materials can stick to each other. This allows one metal to be deposited onto a low-cost substrate, like plastic, and patterned using a low cost, low resolution process and a second to be deposited everywhere over the top. Using the SAM, it is possible to ensure that the second metal does not stick to the first. This allows the second metal to be peeled away from the first, uncovering it in the process and leaving a nanogap all around the edge of the first metal. A nanometre scale structure hastherefore been manufactured, but without the associated cost.The peeling process has been shown to be critical to make this work. Therefore, this project aims to design and build a low cost tool to carry out this peeling process on a 10x10 cm length scale, but with a clear route to scaling up to large areas (e.g. an A3 sheet). In addition, we will show that the nanogap can be incorporated with the deposition of a low-dimensional material to create a genuine electronic nanoscale device, but with the cost of a much larger device. We expect the this will allow entirely new devices to be developed for a whole range of applications, from logic to memories to sensors.
一般的经验法则是,精度每提高10倍,制造成本就会增加一倍。粗略地说,这就是为什么建立一个制造工厂来制造微处理器要花费数十亿英镑的原因,在那里制造的晶体管的物理尺寸在几纳米的长度尺度上,与建立一个工厂来制造印刷电路板的成本相比,印刷电路板足够便宜,可以广泛使用,但特征的尺度是几百微米。在某些情况下,这一规则可能会被打破。一个是使用自然形成的纳米长度尺度的低维材料。这方面的一个例子是石墨烯,近年来受到了很多关注。它自然地形成一个二维的碳原子片,因此不需要“加工”以达到纳米级的厚度。这种“自下而上”的过程以非常低的成本实现了高分辨率,这是感兴趣的原因之一。然而,它们仍然需要对材料进行电接触以限定完整的装置。理想情况下,我们希望仅使用少量的这些材料,例如通过图案化两个金属电极,这两个金属电极仅相隔几纳米,其中低维材料(例如石墨烯)位于纳米间隙内。由于这种长度尺度的金属图案化需要高分辨率的工艺,成本再次变得令人望而却步。该项目旨在通过将一种称为“粘附光刻”的新兴技术与低维材料的生长相结合,直接解决这一制造问题,以创建使用这些材料制造真实的电子设备所需的结构。粘附光刻使用自组装单层(SAM)来控制不同材料彼此粘附的程度。这使得一种金属可以沉积在低成本的基板上,比如塑料,并使用低成本、低分辨率的工艺进行图案化,而第二种金属可以沉积在顶部的任何地方。使用SAM,可以确保第二金属不粘到第一金属。这允许第二金属从第一金属剥离,在该过程中暴露它,并在第一金属的边缘周围留下纳米间隙。一个纳米尺度的结构因此被制造出来,但没有相关的成本。剥离过程已被证明是至关重要的,使这项工作。因此,该项目旨在设计和构建一种低成本的工具,以在10x10 cm的长度尺度上进行剥离过程,但具有扩展到大面积(例如A3片材)的明确路线。此外,我们将表明,纳米间隙可以与低维材料的沉积相结合,以创建一个真正的电子纳米器件,但成本要大得多的设备。我们预计这将允许开发全新的设备,用于从逻辑到存储器到传感器的一系列应用。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanodiodes on a Digestible Substrate
  • DOI:
    10.1109/led.2022.3231080
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Gwenhivir Wyatt-Moon;G. Saravanavel;S. Sambandan;A. Flewitt
  • 通讯作者:
    Gwenhivir Wyatt-Moon;G. Saravanavel;S. Sambandan;A. Flewitt
Nanoscale Semiconductor Devices Fabricated using Adhesion Lithography at Low Cost
使用粘附光刻技术以低成本制造纳米级半导体器件
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Flewitt其他文献

Low Temperature (< 100 oC) Deposited P-Type Cuprous Oxide Thin Films: Importance of Controlled Oxygen and Deposition Energy
低温(< 100 oC)沉积 P 型氧化亚铜薄膜:控制氧气和沉积能量的重要性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Flewitt
  • 通讯作者:
    Andrew Flewitt

Andrew Flewitt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Flewitt', 18)}}的其他基金

Low Dimensional Electronic Device Fabrication at Low Cost over Large Areas: Follow-on
大面积低成本低维电子器件制造:后续
  • 批准号:
    EP/W009757/1
  • 财政年份:
    2021
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
Rapid Multi-antigen COVID-19 Point-of-Care Antibody Test from a Pin-Prick Blood Sample
通过针刺血样进行快速多抗原 COVID-19 护理点抗体检测
  • 批准号:
    EP/V043277/1
  • 财政年份:
    2020
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
Fast ASsessment and Treatment in Healthcare (FAST Healthcare)
医疗保健快速评估和治疗 (FAST Healthcare)
  • 批准号:
    EP/N027000/1
  • 财政年份:
    2016
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
15AGRITECHCAT4: BirdEase: An integrated diagnostic system for bacterial detection in poultry farms
15AGRITECHCAT4:BirdEase:用于家禽养殖场细菌检测的集成诊断系统
  • 批准号:
    BB/N023447/1
  • 财政年份:
    2016
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
The Physics and Engineering of Oxide Semiconductors for Large-Area CMOS
大面积 CMOS 氧化物半导体的物理与工程
  • 批准号:
    EP/M013650/1
  • 财政年份:
    2015
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
AUTOFLEX - Automated Integration of Flexible Electronics
AUTOFLEX - 柔性电子产品的自动集成
  • 批准号:
    EP/L505201/1
  • 财政年份:
    2013
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
Printed Logic Supply Chain (FlexIC) - TSB App. No. 155
印刷逻辑供应链 (FlexIC) - TSB 应用程序。
  • 批准号:
    TS/I001158/1
  • 财政年份:
    2010
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
Film Bulk Acoustic Resonator-based Ultra-Sensitive Biosensor Array Using Low Cost Piezoelectric Polymer as the Active Material
使用低成本压电聚合物作为活性材料的基于薄膜体声谐振器的超灵敏生物传感器阵列
  • 批准号:
    EP/F063865/1
  • 财政年份:
    2009
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
FIREBIRD: Fully Integrated Bidirectional Infrared Displays
FIREBIRD:完全集成的双向红外显示器
  • 批准号:
    TS/G001960/1
  • 财政年份:
    2009
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
Printed high voltage flexible inorganic transistors
印刷高压柔性无机晶体管
  • 批准号:
    DT/F002688/1
  • 财政年份:
    2007
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Exploring materials science based on embedding low-dimensional electronic states
基于嵌入低维电子态探索材料科学
  • 批准号:
    23H05469
  • 财政年份:
    2023
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Low Dimensional Electronic Device Fabrication at Low Cost over Large Areas: Follow-on
大面积低成本低维电子器件制造:后续
  • 批准号:
    EP/W009757/1
  • 财政年份:
    2021
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2021
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Discovery Grants Program - Individual
Creation of exotic low-dimensional material originated from phyllosilicate and control of its electronic property
源自页硅酸盐的奇异低维材料的创建及其电子特性的控制
  • 批准号:
    21K18893
  • 财政年份:
    2021
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2020
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2019
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2018
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Discovery Grants Program - Individual
The physics of plasmonic gain in low-dimensional electronic systems
低维电子系统中等离子体增益的物理学
  • 批准号:
    EP/R004994/1
  • 财政年份:
    2017
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
The physics of plasmonic gain in low-dimensional electronic systems
低维电子系统中等离子体增益的物理学
  • 批准号:
    EP/R00501X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Research Grant
Magnetic and electronic excitations in low-dimensional and nanostructured materials
低维和纳米结构材料中的磁和电子激发
  • 批准号:
    RGPIN-2017-04429
  • 财政年份:
    2017
  • 资助金额:
    $ 32.23万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了