Rough Volatility: A Trojan horse into modern Financial computing
粗糙波动性:现代金融计算中的特洛伊木马
基本信息
- 批准号:EP/T032146/1
- 负责人:
- 金额:$ 101.15万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Financial sector is a key industry in our current society, and providing it with the right accurate tools, while managing the risks, is of paramount importance in order to prevent previous disasters to occur again. A recent (16 October 2019) review by the Bank of England and the Financial Conduct Authority emphasised the importance (and already large) presence of new methods based on Machine Learning in finance-related firms. New techniques require new people or, at the very least new sets of skills. The goal of this proposal is to develop a new set of tools, updating former models with more accurate ones, with modern technologies harnessing the ever-increasing computational power available.We aim at developing a set of models (called `rough volatility') able to capture the historical behaviour of stock prices while being consistent with future forecasts and options data. Despite the obvious nature of the problem, it is still open, and recent developments have paved the way to potential solutions. The first goal is therefore to build a robust unified model consistent with real data, as well to as monitor the corresponding potential risks. The second goal is to develop the numerical techniques required to make this model fully accessible and manageable by financial institutions and the regulators. This numerical part is a core element of the project, and will be based on a combination of classical probabilistic tools and modern Machine Learning techniques. The final step of the project is to show how methods from quantum computing---so far mainly available theoretically---can help speed up these computations, and thereby open up many new doors for the future of Quantitative Finance.The obvious benefits of our results will be to provide a large industry, with deep impact on society, with precise and accurate tools that can be monitored, and hence whose associated risks are reduced. It will also bridge many existing gaps in the field of `rough volatility', as well as build many new connections between classical Mathematical Finance and modern Quantitative Finance; this new rough volatility paradigm will thus constitute a platform to develop modern computing techniques for financial models. Though our project is obviously deeply anchored in Finance, our results will not only provide test cases for some Deep Learning and quantum algorithm, but will also help clarify how these new tools can and should be applied in a controlled way. Since Machine Learning is now ubiquitous in many areas of everyday life, our project will make the field more robust and easily and widely accessible.
金融业是当今社会的一个关键行业,为它提供正确的准确工具,同时管理风险,对于防止以前的灾难再次发生至关重要。英格兰银行和金融行为监管局最近(2019年10月16日)的一项审查强调了基于机器学习的新方法在金融相关公司中的重要性(并且已经很大)。新技术需要新的人才,或者至少需要新的技能。本提案的目标是开发一套新的工具,更新以前的模型更准确的,与现代技术利用不断增加的计算能力。我们的目标是开发一套模型(称为“粗略波动”)能够捕捉股票价格的历史行为,同时与未来的预测和期权数据保持一致。尽管问题的性质显而易见,但它仍然是开放的,最近的事态发展为潜在的解决方案铺平了道路。因此,第一个目标是建立一个与真实的数据一致的强大的统一模型,并监测相应的潜在风险。第二个目标是开发所需的数值技术,使金融机构和监管机构完全可以使用和管理这一模型。这个数字部分是该项目的核心元素,将基于经典概率工具和现代机器学习技术的结合。该项目的最后一步是展示量子计算的方法--到目前为止主要是理论上可用的--如何帮助加速这些计算,从而为量化金融的未来打开许多新的大门。我们的结果的明显好处将是为一个对社会产生深远影响的大型行业提供精确和准确的工具,可以监控,因此其相关风险降低。它还将弥合“粗略波动性”领域的许多现有差距,并在经典数学金融学和现代量化金融学之间建立许多新的联系;因此,这种新的粗略波动性范式将构成一个平台,为金融模型开发现代计算技术。虽然我们的项目显然深深扎根于金融领域,但我们的研究结果不仅将为一些深度学习和量子算法提供测试案例,还将有助于澄清这些新工具如何能够并且应该以可控的方式应用。由于机器学习现在在日常生活的许多领域无处不在,我们的项目将使该领域更加强大,更容易和广泛地访问。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Short Communication: Dynamics of Symmetric SSVI Smiles and Implied Volatility Bubbles
简短的沟通:对称 SSVI 微笑的动态和隐含波动率泡沫
- DOI:10.1137/20m136089x
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Amrani M
- 通讯作者:Amrani M
Large and moderate deviations for importance sampling in the Heston model
Heston 模型中重要性采样的大偏差和中偏差
- DOI:10.1007/s10479-023-05424-0
- 发表时间:2023
- 期刊:
- 影响因子:4.8
- 作者:Geha M
- 通讯作者:Geha M
Perturbation analysis of sub/super hedging problems
子/超级套期保值问题的扰动分析
- DOI:10.1111/mafi.12321
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Badikov S
- 通讯作者:Badikov S
A quantum generative adversarial network for distributions
- DOI:10.1007/s42484-022-00083-z
- 发表时间:2021-10
- 期刊:
- 影响因子:4.8
- 作者:Amine Assouel;A. Jacquier;A. Kondratyev
- 通讯作者:Amine Assouel;A. Jacquier;A. Kondratyev
Functional quantization of rough volatility and applications to volatility derivatives
粗波动率的函数量化及其在波动率衍生品中的应用
- DOI:10.1080/14697688.2023.2273414
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:Bonesini O
- 通讯作者:Bonesini O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antoine Jacquier其他文献
Unsupervised Random Quantum Networks for PDEs
用于偏微分方程的无监督随机量子网络
- DOI:
10.48550/arxiv.2312.14975 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Josh Dees;Antoine Jacquier;Sylvain Laizet - 通讯作者:
Sylvain Laizet
Transportation-cost inequalities for non-linear Gaussian functionals
非线性高斯泛函的运输成本不等式
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ioannis Gasteratos;Antoine Jacquier - 通讯作者:
Antoine Jacquier
A note on essential smoothness in the Heston model
- DOI:
10.1007/s00780-011-0162-z - 发表时间:
2011-09-13 - 期刊:
- 影响因子:1.400
- 作者:
Martin Forde;Antoine Jacquier;Aleksandar Mijatović - 通讯作者:
Aleksandar Mijatović
Correction note for ‘The large-maturity smile for the Heston model’
- DOI:
10.1007/s00780-012-0197-9 - 发表时间:
2012-08-30 - 期刊:
- 影响因子:1.400
- 作者:
Carole Bernard;Zhenyu Cui;Martin Forde;Antoine Jacquier;Don McLeish;Aleksandar Mijatović - 通讯作者:
Aleksandar Mijatović
Operator Deep Smoothing for Implied Volatility
隐含波动率的算子深度平滑
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lukas Gonon;Antoine Jacquier;Ruben Wiedemann - 通讯作者:
Ruben Wiedemann
Antoine Jacquier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antoine Jacquier', 18)}}的其他基金
Asymptotics and dynamics of forward implied volatility
远期隐含波动率的渐近性和动态
- 批准号:
EP/M008436/1 - 财政年份:2014
- 资助金额:
$ 101.15万 - 项目类别:
Research Grant
相似国自然基金
基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
- 批准号:41105102
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Impacts of Predictable Income Volatility and Income Risk on Economic Outcomes and Behaviors
可预测的收入波动和收入风险对经济成果和行为的影响
- 批准号:
2242588 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Standard Grant
Understanding the Effects of Land Hydrology, Water Volatility, and Rotation Rate on Clouds, Climate, and Circulation in a Hierarchy of Models
了解模型层次结构中陆地水文、水波动和自转速率对云、气候和环流的影响
- 批准号:
2310364 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Standard Grant
Three Topics in Stochastic Analysis: Kyle's model, Systems of BSDEs and Superrough volatility
随机分析的三个主题:凯尔模型、倒向随机微分方程系统和超粗糙波动性
- 批准号:
2307729 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Standard Grant
Quantifying the cognitive processes supporting computations of stochasticity and volatility in humans
量化支持人类随机性和波动性计算的认知过程
- 批准号:
10732422 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Price Discovery in Equity and Volatility Futures for Trading and Hedging
用于交易和对冲的股票和波动率期货的价格发现
- 批准号:
DP230101472 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Discovery Projects
LOSS-SAMPLER: Tools for quantifying and managing unseen volatility in CER portfolios
LOSS-SAMPLER:用于量化和管理 CER 投资组合中未见波动的工具
- 批准号:
10057920 - 财政年份:2023
- 资助金额:
$ 101.15万 - 项目类别:
Small Business Research Initiative
Topics on discrete-time stochastic volatility models with applications in finance and insurance
离散时间随机波动率模型及其在金融和保险中的应用主题
- 批准号:
RGPIN-2018-04746 - 财政年份:2022
- 资助金额:
$ 101.15万 - 项目类别:
Discovery Grants Program - Individual
LOSS-SAMPLER: A tool for identifying unseen volatility in present and future Climate and Environmental Risk (CER) portfolios
LOSS-SAMPLER:用于识别当前和未来气候和环境风险 (CER) 投资组合中未见波动的工具
- 批准号:
10030979 - 财政年份:2022
- 资助金额:
$ 101.15万 - 项目类别:
Small Business Research Initiative
Digitalising the purchase of Feed, Fuel and Fertiliser for dairy farmers to help manage price volatility
将奶农饲料、燃料和肥料的采购数字化,以帮助管理价格波动
- 批准号:
10046812 - 财政年份:2022
- 资助金额:
$ 101.15万 - 项目类别:
Grant for R&D
Multivariate Stochastic Volatility Models for High-dimensional and High Frequency Data
高维高频数据的多元随机波动率模型
- 批准号:
22K01429 - 财政年份:2022
- 资助金额:
$ 101.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)