Hyperbolic problems with discontinuous coefficients

具有不连续系数的双曲问题

基本信息

  • 批准号:
    EP/V005529/1
  • 负责人:
  • 金额:
    $ 74.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Linear and nonlinear hyperbolic PDEs arise in all sciences (physics, chemistry, medicine, engineering, astronomy, etc). In particular, in physics they model several important phenomena, from propagation of waves in a medium (for instance propagation of seismic waves during an earthquake) to refraction in crystals and gas-dynamics. When modelling wave propagation trough a multi-layered medium, for instance the subsoil during an earthquake, it is physically meaningful to make use of discontinuous functions. This project wants to study the largest possible class of hyperbolic equations and systems: with variable multiplicities and discontinuous coefficients (depending on time and space). This is notoriously a very difficult problem due to the presence of multiplicities and the low-regularity of the coefficients. It will require the development of new analytical methods which will be first introduced under assumptions of regularity (first part of the project) and then gradually adapted to less regular coefficients (second part of the project). In order to provide a unified approach to hyperbolic problems with discontinuous coefficients, we will test the strength of our new analytical methods numerically. This will build a bridge between two different approaches to hyperbolic PDEs (analytical and numerical), a bridge based on analysis, comparison and implementation of new ideas.
线性和非线性双曲偏微分方程出现在所有科学(物理、化学、医学、工程、天文学等)中。特别是,在物理学中,它们模拟了几种重要的现象,从波在介质中的传播(例如地震中地震波的传播)到晶体和气体动力学中的折射。当模拟波在多层介质中的传播时,例如地震时的底土,使用不连续函数在物理上是有意义的。这个项目想要研究最大可能的双曲方程和系统:具有可变多重性和不连续系数(取决于时间和空间)。由于存在多重性和系数的低正则性,这是一个非常困难的问题。这将需要发展新的分析方法,这些方法将首先在规则假设下引入(项目的第一部分),然后逐渐适应不那么规则的系数(项目的第二部分)。为了给具有不连续系数的双曲型问题提供一个统一的方法,我们将用数值方法来检验我们的新分析方法的强度。这将在双曲偏微分方程的两种不同方法(解析和数值)之间建立一座桥梁,一座基于分析、比较和实施新思想的桥梁。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Wave Equation with Space Dependent Coefficients: Singularities and Lower Order Terms
关于具有空间相关系数的波动方程:奇异性和低阶项
  • DOI:
    10.1007/s10440-023-00601-6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Discacciati M
  • 通讯作者:
    Discacciati M
A note on the polar decomposition in metric spaces
关于度量空间中极坐标分解的注解
  • DOI:
    10.48550/arxiv.2309.00877
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avetisyan Z
  • 通讯作者:
    Avetisyan Z
Discrete Time-Dependent Wave Equation for the Schrodinger Operator with Unbounded Potential¨
具有无界势的薛定谔算子的离散瞬态波动方程
  • DOI:
    10.2139/ssrn.4540018
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    DASGUPTA A
  • 通讯作者:
    DASGUPTA A
Wave Equation for Sturm-Liouville Operator with Singular Intermediate Coefficient and Potential
具有奇异中间系数和势的Sturm-Liouville算子的波动方程
Hyperbolic systems with non-diagonalisable principal part and variable multiplicities, III: singular coefficients
具有不可对角化主部分和可变重数的双曲系统,III:奇异系数
  • DOI:
    10.1007/s00208-023-02792-7
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Garetto C
  • 通讯作者:
    Garetto C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claudia Garetto其他文献

Generalized oscillatory integrals and Fourier integral operators
广义振荡积分和傅立叶积分算子
$C^{\infty }$ Well-Posedness of Higher Order Hyperbolic Pseudo-Differential Equations with Multiplicities
  • DOI:
    10.1007/s10440-025-00717-x
  • 发表时间:
    2025-02-27
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Claudia Garetto;Bolys Sabitbek
  • 通讯作者:
    Bolys Sabitbek
Generalized Fourier Integral Operator Methods for Hyperbolic Equations with Singularities
具有奇点的双曲方程的广义傅立叶积分算子方法
Symmetrisers and generalised solutions for strictly hyperbolic systems with singular coefficients
具有奇异系数的严格双曲系统的对称算子和广义解
  • DOI:
    10.1002/mana.201400192
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Claudia Garetto;M. Oberguggenberger
  • 通讯作者:
    M. Oberguggenberger
On the wave equation with multiplicities and space-dependent irregular coefficients
关于具有多重性和空间相关的不规则系数的波动方程

Claudia Garetto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claudia Garetto', 18)}}的其他基金

Hyperbolic problems with discontinuous coefficients
具有不连续系数的双曲问题
  • 批准号:
    EP/V005529/2
  • 财政年份:
    2022
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Research Grant
Hyperbolic systems with multiplicities
具有重数的双曲系统
  • 批准号:
    EP/L026422/1
  • 财政年份:
    2014
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Research Grant

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hyperbolic problems with discontinuous coefficients
具有不连续系数的双曲问题
  • 批准号:
    EP/V005529/2
  • 财政年份:
    2022
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Research Grant
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
  • 批准号:
    2137305
  • 财政年份:
    2021
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Standard Grant
Novel Discontinuous Galerkin Methods for Deterministic and Stochastic Optimization Problems with Inequality Constraints
具有不等式约束的确定性和随机优化问题的新型间断伽辽金方法
  • 批准号:
    2111004
  • 财政年份:
    2021
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Continuing Grant
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
  • 批准号:
    534997-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
  • 批准号:
    534997-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis of space-time hybridizable discontinuous Galerkin methods for incompressible flow problems on moving domains
动域不可压缩流动问题时空杂化间断伽辽金方法分析
  • 批准号:
    534997-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Discontinuous galerkin methods for flow and electro-magnetic problems
用于解决流动和电磁问题的不连续伽辽金方法
  • 批准号:
    288315-2007
  • 财政年份:
    2012
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal preconditioners of spectral Discontinuous Galerkin methods for elliptic boundary value problems
椭圆边值问题谱间断Galerkin方法的最优预处理器
  • 批准号:
    218348188
  • 财政年份:
    2012
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Research Grants
RUI: Investigation of Discontinuous Galerkin Least-Squares Finite Element Methods for Singularly Perturbed Problems
RUI:奇异摄动问题的不连续伽辽金最小二乘有限元方法研究
  • 批准号:
    1217268
  • 财政年份:
    2012
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
  • 批准号:
    1217563
  • 财政年份:
    2011
  • 资助金额:
    $ 74.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了