Microstructural engineering of piezoelectric composites

压电复合材料的微结构工程

基本信息

  • 批准号:
    EP/V011332/1
  • 负责人:
  • 金额:
    $ 32.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will create novel fabrication approaches, using the freeze-casting method combined with slip- and tape-casting, to produce piezoelectric composites with microstructures tailored to yield piezoelectric properties that exceed the performance of off-the-shelf materials, whilst providing advantages over traditional manufacturing methods. The global market for piezoelectric ceramics was valued at $19.6 billion in 2019 and is expected to grow in the areas of energy harvesting, IoT-related sensors and piezoelectric composites in the next decade. Piezoelectric composites are critical to the UK's defence (SONAR), and public health (medical ultrasound) sectors, as well as being used widely in the transport and energy industries. Developing new methods for producing high performance piezoelectric composites represents a significant benefit in terms of materials cost and manufacture, as well as device performance, by enabling low-cost fabrication of bespoke piezoelectric materials with properties tuned depending on the desired application.Freeze casting is an effective method for controlling the microstructures of porous materials, whereby pores are templated on solvent crystals whose growth and morphology depends on temperature gradients and freezing behaviour during processing. These porous microstructures, e.g. porous piezoelectric ceramics, can then be infiltrated with polymer second phases to improve mechanical and electrical properties. The properties of piezoelectric composites depend strongly on local interactions between electric- and mechanical fields and the material structure over a range of length scales, from ferroelectric domains (sub-micron) through to macro-structure (on the order of millimetres) of the composites. In this project, the aim is to increase the understanding of these electromechanical field/material interactions in piezoelectric composites and design microstructures to exploit beneficial effects accordingly. This will be underpinned by developing advanced numerical models to both aid with microstructural/fabrication process design, and provide insight into experimental observations of the properties of materials fabricated during the project. The methods that will be investigated offer several advantages over current techniques used to produce commerically available piezoelectric composites. Firstly, the materials can be produced at near-net shape, reducing post-machining processes or manual fibre lay up common for macro-fibre composites fabricated by dice-/arrange-and-fill processes. Secondly, the level of control that is theoretically possible, although not yet realised, by utilising freezing processes to template microstructures, provides the potential to fabricate materials with bespoke properties tuned to specific applications, yielding an optimised combination of piezoelectric, dielectric and mechanical properties to promote enhanced electromechanical coupling between the active piezoelectric and the wider device. Thirdly, the reduced length scale of microstructural features introduced using freeze casting, compared to dice-and-fill composites for example, may provide a route to engineering the inherent properties of the piezoelectric ceramic matrix. Using water as a freezing agent means these processes have a low environmental impact, and near-net shape, optimised composite microstructures with comparable performance to dense piezoceramics will reduce the volume of raw material required in the first place.
该项目将创造新的制造方法,使用冷冻铸造方法结合粉浆和流延,生产具有定制微结构的压电复合材料,以产生超过现成材料性能的压电性能,同时提供优于传统制造方法的优势。2019年,全球压电陶瓷市场价值196亿美元,预计未来十年将在能源收集、物联网相关传感器和压电复合材料领域增长。压电复合材料对英国的国防(声纳)和公共卫生(医疗超声)部门至关重要,并广泛用于运输和能源行业。开发用于生产高性能压电复合材料的新方法在材料成本和制造以及器件性能方面具有显著的益处,通过使定制压电材料的低成本制造成为可能,所述定制压电材料具有根据期望的应用而调整的特性。冷冻铸造是控制多孔材料的微观结构的有效方法,由此在溶剂晶体上模板化孔,所述溶剂晶体的生长和形态取决于加工过程中的温度梯度和冷冻行为。这些多孔微结构,例如多孔压电陶瓷,然后可以用聚合物第二相渗透以改善机械和电气性能。压电复合材料的性能强烈地依赖于电场和机械场之间的局部相互作用以及从复合材料的铁电畴(亚微米)到宏观结构(毫米量级)的一系列长度尺度上的材料结构。在这个项目中,目的是增加对压电复合材料中这些机电场/材料相互作用的理解,并设计相应的微结构以利用有益的效果。这将通过开发先进的数值模型来支持,以帮助微结构/制造工艺设计,并提供对项目期间制造的材料特性的实验观察的见解。将被调查的方法提供了几个优势,目前的技术用于生产可替代的压电复合材料。首先,材料可以以近净形状生产,减少了后加工工艺或手工纤维铺叠,这对于通过切割/切割和填充工艺制造的粗纤维复合材料是常见的。其次,通过利用冷冻工艺来模板化微结构,理论上可能的控制水平(尽管尚未实现)提供了制造具有针对特定应用调整的定制特性的材料的潜力,从而产生压电、介电和机械特性的优化组合,以促进有源压电和更宽的器件之间的增强的机电耦合。第三,与例如切割和填充复合材料相比,使用冷冻铸造引入的微结构特征的减小的长度尺度可以提供一种设计压电陶瓷基质的固有性质的途径。使用水作为冷冻剂意味着这些工艺对环境的影响很小,并且接近净形,优化的复合材料微观结构具有与致密压电陶瓷相当的性能,这将首先减少所需的原材料体积。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3
压电陶瓷 K0.5Na0.5NbO3 冷烧结时出现塑性变形和高位错密度的异常情况
Improving piezoelectric energy harvesting performance through mechanical stiffness matching
Energy Harvesting from Water Flow by Using Piezoelectric Materials
  • DOI:
    10.1002/aesr.202300235
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zihe Li;J. Roscow;H. Khanbareh;Geoffrey Haswell;Chris Bowen
  • 通讯作者:
    Zihe Li;J. Roscow;H. Khanbareh;Geoffrey Haswell;Chris Bowen
A comprehensive energy flow model for piezoelectric energy harvesters: understanding the relationships between material properties and power output
  • DOI:
    10.1016/j.mtener.2023.101396
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Zihe Li;J. Roscow;H. Khanbareh;John Taylor;Geoffrey Haswell;C. Bowen
  • 通讯作者:
    Zihe Li;J. Roscow;H. Khanbareh;John Taylor;Geoffrey Haswell;C. Bowen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Roscow其他文献

iomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors
用于钠离子电池和钠离子电容器的碘质衍生碳
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Jianhui Zhu;James Roscow;Sundaram Ch;rasekaran;Libo Deng;Peixin Zhang;Tingshu He;Kuo Wang;Licong Huang
  • 通讯作者:
    Licong Huang
Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions
  • DOI:
    10.1016/j.nanoen.2020.105080
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Sundaram Chandrasekaran;Dingtao Ma;Yanqi Ge;Libo Deng;Chris Bowen;James Roscow;Yan Zhang;Zhiqun Lin;R.D.K. Misra;Jianqing Li;Peixin Zhang;Han Zhang
  • 通讯作者:
    Han Zhang
A phase field model for cold sintering of barium titanate
钛酸钡冷烧结的相场模型
  • DOI:
    10.1016/j.jeurceramsoc.2025.117534
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Kamalpreet Singh;Alessandro Leronni;Chris R. Bowen;James Roscow
  • 通讯作者:
    James Roscow

James Roscow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Roscow', 18)}}的其他基金

Cold Sintering of Piezoelectric Composites
压电复合材料的冷烧结
  • 批准号:
    EP/V002155/1
  • 财政年份:
    2021
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Research Grant

相似国自然基金

软骨调节素调控BMSCs骨和软骨双向分化平衡的研究
  • 批准号:
    81272128
  • 批准年份:
    2012
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于脂肪干细胞的同种异体肌腱缺损修复及机制
  • 批准号:
    81101359
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
脂肪来源干细胞诱导尿路上皮细胞及其机制的研究
  • 批准号:
    81070605
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
Ihh在组织工程骨构建中作用和机制研究
  • 批准号:
    30973069
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Leydig干细胞纯化、扩增及雄激素分泌组织构建
  • 批准号:
    30970736
  • 批准年份:
    2009
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
预构血管化支架以构建大体积岛状组织工程化脂肪瓣的实验研究
  • 批准号:
    30901566
  • 批准年份:
    2009
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
人脐血间充质干细胞成骨潜能亚群的特异性分子标志
  • 批准号:
    30800232
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Wireless mechano-electrical stimulation of pudendal nerve using piezoelectric platform for stress urinary incontinence
利用压电平台无线机电刺激阴部神经治疗压力性尿失禁
  • 批准号:
    10629570
  • 财政年份:
    2023
  • 资助金额:
    $ 32.66万
  • 项目类别:
FMSG: Bio: Rapid Bio-Printing of Hybrid Piezoelectric and Magnetostrictive Platforms for Tissue Engineering
FMSG:生物:用于组织工程的混合压电和磁致伸缩平台的快速生物打印
  • 批准号:
    2229279
  • 财政年份:
    2022
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Standard Grant
Biodegradable Piezoelectric Nanocomposite Scaffold with Physical Exercise to Heal Major Cartilage Defects in Large Animals
可生物降解的压电纳米复合支架与体育锻炼可治愈大型动物的主要软骨缺陷
  • 批准号:
    10342706
  • 财政年份:
    2022
  • 资助金额:
    $ 32.66万
  • 项目类别:
Biodegradable Piezoelectric Nanocomposite Scaffold with Physical Exercise to Heal Major Cartilage Defects in Large Animals
可生物降解的压电纳米复合支架与体育锻炼可治愈大型动物的主要软骨缺陷
  • 批准号:
    10634516
  • 财政年份:
    2022
  • 资助金额:
    $ 32.66万
  • 项目类别:
Development of high-performance lead-free piezoelectric single crystals by formation of phase boundary and domain engineering
通过相界和域工程的形成开发高性能无铅压电单晶
  • 批准号:
    20K05073
  • 财政年份:
    2020
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Molecular Mechanism of the Surface Charge of Piezoelectric Materials for Bone Regenerative Engineering
骨再生工程压电材料表面电荷的分子机制
  • 批准号:
    9890521
  • 财政年份:
    2020
  • 资助金额:
    $ 32.66万
  • 项目类别:
A novel injectable piezoelectric hydrogel for osteoarthritis treatment
一种用于治疗骨关节炎的新型可注射压电水凝胶
  • 批准号:
    9920090
  • 财政年份:
    2019
  • 资助金额:
    $ 32.66万
  • 项目类别:
Biodegradable Piezoelectric Scaffold for Bone regeneration
用于骨再生的可生物降解压电支架
  • 批准号:
    9913470
  • 财政年份:
    2019
  • 资助金额:
    $ 32.66万
  • 项目类别:
Remote Neurostimulation with Ultrasound-activated Piezoelectric Nanoparticles
使用超声波激活压电纳米粒子进行远程神经刺激
  • 批准号:
    9766304
  • 财政年份:
    2018
  • 资助金额:
    $ 32.66万
  • 项目类别:
Development of Bi-based Piezoelectric Materials with High Tc and d33 by Nano-domain Engineering
利用纳米域工程开发高Tc和d33的铋基压电材料
  • 批准号:
    17H03389
  • 财政年份:
    2017
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了