Microstructural engineering of piezoelectric composites

压电复合材料的微结构工程

基本信息

  • 批准号:
    EP/V011332/1
  • 负责人:
  • 金额:
    $ 32.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will create novel fabrication approaches, using the freeze-casting method combined with slip- and tape-casting, to produce piezoelectric composites with microstructures tailored to yield piezoelectric properties that exceed the performance of off-the-shelf materials, whilst providing advantages over traditional manufacturing methods. The global market for piezoelectric ceramics was valued at $19.6 billion in 2019 and is expected to grow in the areas of energy harvesting, IoT-related sensors and piezoelectric composites in the next decade. Piezoelectric composites are critical to the UK's defence (SONAR), and public health (medical ultrasound) sectors, as well as being used widely in the transport and energy industries. Developing new methods for producing high performance piezoelectric composites represents a significant benefit in terms of materials cost and manufacture, as well as device performance, by enabling low-cost fabrication of bespoke piezoelectric materials with properties tuned depending on the desired application.Freeze casting is an effective method for controlling the microstructures of porous materials, whereby pores are templated on solvent crystals whose growth and morphology depends on temperature gradients and freezing behaviour during processing. These porous microstructures, e.g. porous piezoelectric ceramics, can then be infiltrated with polymer second phases to improve mechanical and electrical properties. The properties of piezoelectric composites depend strongly on local interactions between electric- and mechanical fields and the material structure over a range of length scales, from ferroelectric domains (sub-micron) through to macro-structure (on the order of millimetres) of the composites. In this project, the aim is to increase the understanding of these electromechanical field/material interactions in piezoelectric composites and design microstructures to exploit beneficial effects accordingly. This will be underpinned by developing advanced numerical models to both aid with microstructural/fabrication process design, and provide insight into experimental observations of the properties of materials fabricated during the project. The methods that will be investigated offer several advantages over current techniques used to produce commerically available piezoelectric composites. Firstly, the materials can be produced at near-net shape, reducing post-machining processes or manual fibre lay up common for macro-fibre composites fabricated by dice-/arrange-and-fill processes. Secondly, the level of control that is theoretically possible, although not yet realised, by utilising freezing processes to template microstructures, provides the potential to fabricate materials with bespoke properties tuned to specific applications, yielding an optimised combination of piezoelectric, dielectric and mechanical properties to promote enhanced electromechanical coupling between the active piezoelectric and the wider device. Thirdly, the reduced length scale of microstructural features introduced using freeze casting, compared to dice-and-fill composites for example, may provide a route to engineering the inherent properties of the piezoelectric ceramic matrix. Using water as a freezing agent means these processes have a low environmental impact, and near-net shape, optimised composite microstructures with comparable performance to dense piezoceramics will reduce the volume of raw material required in the first place.
该项目将使用结合滑动和胶带铸造的冻结方法来创建新颖的制造方法,以生产带有用于产生超出现成材料性能的压电特性的微观结构的压电复合材料,同时提供了比传统制造方法的优势。全球压电陶瓷市场的价值在2019年为196亿美元,预计在未来十年的能源收集,与物联网相关的传感器和压电复合材料的领域将增长。压电复合材料对英国国防(声纳)和公共卫生(医疗超声)领域至关重要,并且在运输和能源行业中广泛使用。开发生产高性能压电复合材料的新方法在材料成本和制造以及设备性能方面是一个重大好处加工过程中的梯度和冻结行为。这些多孔的微观结构,例如然后可以用聚合物第二阶段渗入多孔压电陶瓷,以改善机械和电性能。压电组合材料的性质在一定范围的范围内,在一定范围内,从铁电域(sub-Micron)到宏观结构(按毫米的宏观结构(按毫米)的复合材料的宏结构(毫米)),在很大程度上取决于电场和机械场之间的局部相互作用。在这个项目中,目的是增加对压电复合材料和设计微观结构中这些机电场/材料相互作用的理解,以相应利用有益效果。这将是通过开发高级数值模型来帮助微观结构/制造工艺设计的基础的基础,并洞悉了项目在项目中制造的材料的性质的实验观察。将进行研究的方法比用于生产商业可用的压电复合材料的当前技术具有多个优点。首先,这些材料可以以近网状形状生产,减少了结合后的过程或手动纤维,该材料对于由骰子/排列过程制造的宏观纤维复合材料而言是常见的。其次,理论上可以通过将冻结过程用于模板微观结构的理论上可能的控制水平,它提供了用定制属性来制造材料的潜力,从而使对特定应用的定制属性进行了优化的组合,从而使压电,介电和机械性能在促进了增强的电力机械机械工具和机械设备。第三,与掷骰子复合材料相比,使用冻结铸件引入的微结构特征的长度尺度缩小了,例如,可以为设计压电陶瓷矩阵的固有特性提供途径。使用水作为冰点剂意味着这些过程的环境影响较低,并且近网状形状优化的复合微观结构具有可比性能与密集的压电陶瓷相当的,将首先减少所需的原材料的体积。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3
压电陶瓷 K0.5Na0.5NbO3 冷烧结时出现塑性变形和高位错密度的异常情况
Improving piezoelectric energy harvesting performance through mechanical stiffness matching
Energy Harvesting from Water Flow by Using Piezoelectric Materials
  • DOI:
    10.1002/aesr.202300235
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zihe Li;J. Roscow;H. Khanbareh;Geoffrey Haswell;Chris Bowen
  • 通讯作者:
    Zihe Li;J. Roscow;H. Khanbareh;Geoffrey Haswell;Chris Bowen
A comprehensive energy flow model for piezoelectric energy harvesters: understanding the relationships between material properties and power output
  • DOI:
    10.1016/j.mtener.2023.101396
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Zihe Li;J. Roscow;H. Khanbareh;John Taylor;Geoffrey Haswell;C. Bowen
  • 通讯作者:
    Zihe Li;J. Roscow;H. Khanbareh;John Taylor;Geoffrey Haswell;C. Bowen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Roscow其他文献

iomass-Derived Carbons for Sodium-Ion Batteries and Sodium-Ion Capacitors
用于钠离子电池和钠离子电容器的碘质衍生碳
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Jianhui Zhu;James Roscow;Sundaram Ch;rasekaran;Libo Deng;Peixin Zhang;Tingshu He;Kuo Wang;Licong Huang
  • 通讯作者:
    Licong Huang

James Roscow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Roscow', 18)}}的其他基金

Cold Sintering of Piezoelectric Composites
压电复合材料的冷烧结
  • 批准号:
    EP/V002155/1
  • 财政年份:
    2021
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Research Grant

相似国自然基金

基于晶粒取向工程的细晶压电陶瓷驱动器研究
  • 批准号:
    52302154
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AlGaN/GaN异质结压电能带工程和新型柔性功率器件
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
AlGaN/GaN异质结压电能带工程和新型柔性功率器件
  • 批准号:
    52173298
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
多极轴分子铁电体的畴工程初步探索
  • 批准号:
    11904151
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
面向桥梁工程的非线性压电能量采集器及其动力学特征研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:

相似海外基金

Wireless mechano-electrical stimulation of pudendal nerve using piezoelectric platform for stress urinary incontinence
利用压电平台无线机电刺激阴部神经治疗压力性尿失禁
  • 批准号:
    10629570
  • 财政年份:
    2023
  • 资助金额:
    $ 32.66万
  • 项目类别:
FMSG: Bio: Rapid Bio-Printing of Hybrid Piezoelectric and Magnetostrictive Platforms for Tissue Engineering
FMSG:生物:用于组织工程的混合压电和磁致伸缩平台的快速生物打印
  • 批准号:
    2229279
  • 财政年份:
    2022
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Standard Grant
Biodegradable Piezoelectric Nanocomposite Scaffold with Physical Exercise to Heal Major Cartilage Defects in Large Animals
可生物降解的压电纳米复合支架与体育锻炼可治愈大型动物的主要软骨缺陷
  • 批准号:
    10342706
  • 财政年份:
    2022
  • 资助金额:
    $ 32.66万
  • 项目类别:
Biodegradable Piezoelectric Nanocomposite Scaffold with Physical Exercise to Heal Major Cartilage Defects in Large Animals
可生物降解的压电纳米复合支架与体育锻炼可治愈大型动物的主要软骨缺陷
  • 批准号:
    10634516
  • 财政年份:
    2022
  • 资助金额:
    $ 32.66万
  • 项目类别:
Development of high-performance lead-free piezoelectric single crystals by formation of phase boundary and domain engineering
通过相界和域工程的形成开发高性能无铅压电单晶
  • 批准号:
    20K05073
  • 财政年份:
    2020
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了