Cooling molecules to quantum degeneracy

将分子冷却至量子简并

基本信息

  • 批准号:
    EP/V011499/1
  • 负责人:
  • 金额:
    $ 186.41万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Everyone is familiar with the three normal states of matter - solids, liquids and gases. There is also another state, known as a Bose-Einstein condensate (BEC), which is a state of matter that can be described only by quantum mechanics. Due to the uncertainty relation between position and speed, an atom spreads out when it slows down. If a gas of atoms is cooled to very low temperature, the atoms may spread out so much that they all overlap. At this point they coordinate, all gathering together into the quantum state that has the lowest energy, and behaving as a single entity instead of a collection of individuals. This state of matter was predicted in 1924 by Bose and Einstein, and in 1995 researchers created it for the first time by cooling a gas of atoms to less than a microkelvin (a millionth of a degree above absolute zero). Bose-Einstein condensation underlies some extraordinary phenomena such as superfluidity and superconductivity.The study of BECs of atoms has been an immensely fruitful research topic for the last 25 years, and there are strong motivations to extend this to molecules. Importantly, molecules can be polar, having a positive end and a negative end. Due to these electric dipoles, molecules can interact with one another far more strongly than atoms and over much larger distances. In fact, in a BEC of polar molecules, every molecule interacts with every other molecule, creating a strongly interacting quantum system. From these interacting systems emerge new and remarkable phenomena that could not be predicted from the behaviour of the constituents and are far too complex to simulate on a normal computer. Examples include magnetism and high-temperature superconductivity. A molecular BEC would be an ideal, highly controllable system for studying these interacting quantum systems. It may also contribute to the development of quantum computers and improve our understanding of collisions and chemistry at low temperatures. Finally, such low temperatures would hugely improve the precision of ongoing experiments that use molecules to test fundamental physics, such as measurements that search for the origins of matter-antimatter asymmetry.Despite all this motivation, molecules have not yet been cooled to the low temperatures needed for BEC. We aim to do that in this project. We will first use laser cooling, which is a method we have pioneered for molecules over the last few years. Then we will trap the molecules and use collisions to cool them further. Here, there are two approaches. In the first - evaporative cooling - the highest-energy molecules are removed from the trap and the remaining molecules collide and re-distribute the reduced energy, thereby cooling to lower temperatures. In the second - sympathetic cooling - the molecules cool as they collide with atoms at lower temperature. In addition to these crucial temperature-lowering collisions, there can also be bad collisions that cause molecules to change their state, react, or be ejected from the trap. The key to success is to control these collisions, enhancing the good ones and suppressing the bad ones. Our combination of theoretical and experimental expertise will be our guide. The BEC we produce will be a completely new type of quantum matter, whose nature is governed by the strong, long-range dipole-dipole interactions. We will study its behaviour and learn how to control it using electric and magnetic fields, opening up a rich new field of strongly-interacting dipolar matter.
每个人都熟悉物质的三种正常状态--固体、液体和气体。还有另一种状态,称为玻色-爱因斯坦凝聚(BEC),这是一种只能用量子力学描述的物质状态。由于位置和速度之间的不确定性关系,原子在减速时会散开。如果一种原子气体被冷却到很低的温度,原子可能会散开,以至于它们都重叠在一起。在这一点上,他们协调,所有聚集在一起,进入具有最低能量的量子态,并表现为一个单一的实体,而不是一个个体的集合。玻色和爱因斯坦在1924年预测了这种物质状态,1995年,研究人员通过将原子气体冷却到低于微开尔文(绝对零度以上百万分之一度)首次创造了它。玻色-爱因斯坦凝聚是超流性和超导性等一些特殊现象的基础,原子玻色-爱因斯坦凝聚的研究在过去的25年里取得了丰硕的成果,并且有很强的动力将其扩展到分子。重要的是,分子可以是极性的,具有正端和负端。由于这些电偶极子,分子之间的相互作用比原子之间的相互作用强得多,距离也远得多。事实上,在极性分子的BEC中,每个分子都与其他分子相互作用,创造了一个强相互作用的量子系统。从这些相互作用的系统中出现了新的和显着的现象,这些现象无法从组分的行为中预测,并且过于复杂,无法在普通计算机上模拟。例子包括磁性和高温超导性。分子BEC将是研究这些相互作用的量子系统的理想的,高度可控的系统。它还可能有助于量子计算机的发展,并提高我们对低温下碰撞和化学的理解。最后,如此低的温度将极大地提高正在进行的使用分子来测试基础物理的实验的精度,例如寻找物质-反物质不对称性起源的测量。尽管有这些动机,分子还没有被冷却到BEC所需的低温。我们的目标是在这个项目中这样做。我们将首先使用激光冷却,这是我们在过去几年中为分子开创的方法。然后,我们将捕获分子,并使用碰撞来进一步冷却它们。在这方面,有两种办法。在第一种-蒸发冷却-最高能量的分子从阱中移除,剩余的分子碰撞并重新分配减少的能量,从而冷却到较低的温度。在第二种--交感冷却--分子在与较低温度的原子碰撞时冷却。除了这些降低温度的关键碰撞之外,还可能存在导致分子改变状态、反应或从陷阱中弹出的不良碰撞。成功的关键是控制这些冲突,增强好的冲突,抑制坏的冲突。我们的理论和实验专业知识的结合将是我们的指导。我们产生的BEC将是一种全新类型的量子物质,其性质由强的长程偶极-偶极相互作用控制。我们将研究它的行为,并学习如何使用电场和磁场控制它,开辟一个丰富的强相互作用偶极物质的新领域。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shielding collisions of ultracold CaF molecules with static electric fields
屏蔽超冷 CaF 分子与静电场的碰撞
  • DOI:
    10.1103/physrevresearch.5.033097
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Mukherjee B
  • 通讯作者:
    Mukherjee B
Quantum Computation in a Hybrid Array of Molecules and Rydberg Atoms
分子和里德伯原子混合阵列中的量子计算
  • DOI:
    10.1103/prxquantum.3.030340
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Zhang C
  • 通讯作者:
    Zhang C
Collisions in a dual-species magneto-optical trap of molecules and atoms
分子和原子双物质磁光陷阱中的碰撞
  • DOI:
    10.1088/1367-2630/ac0c9a
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Jurgilas S
  • 通讯作者:
    Jurgilas S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Tarbutt其他文献

Michael Tarbutt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Tarbutt', 18)}}的其他基金

Ultracold EEDM - Measuring The Electron's Electric Dipole Moment Using Ultracold Molecules
超冷 EEDM - 使用超冷分子测量电子的电偶极矩
  • 批准号:
    EP/X030180/1
  • 财政年份:
    2023
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Research Grant
An optical frequency comb to support the quantum technology for fundamental physics programme
支持基础物理项目量子技术的光学频率梳
  • 批准号:
    ST/X005046/1
  • 财政年份:
    2022
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Research Grant
Accelerating the development of novel clocks for measuring varying fundamental constants
加速开发用于测量不同基本常数的新型时钟
  • 批准号:
    ST/W006197/1
  • 财政年份:
    2022
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Research Grant
A network of clocks for measuring the stability of fundamental constants
用于测量基本常数稳定性的时钟网络
  • 批准号:
    ST/T006234/1
  • 财政年份:
    2021
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Research Grant
Ultracold eEDM: a new experiment to measure the electron's electric dipole moment using ultracold moelcules
超冷 eEDM:利用超冷分子测量电子电偶极矩的新实验
  • 批准号:
    ST/S000011/1
  • 财政年份:
    2018
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Research Grant
Magneto-optical trapping and sympathetic cooling of molecules
分子的磁光捕获和交感冷却
  • 批准号:
    EP/M027716/1
  • 财政年份:
    2015
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Research Grant
Collisions of Polar Molecules with Ultracold Alkali Metal Atoms (IP3 of EuroQUAM CoPoMol)
极性分子与超冷碱金属原子的碰撞(EuroQUAM CoPoMol 的 IP3)
  • 批准号:
    EP/E038603/1
  • 财政年份:
    2007
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Research Grant

相似国自然基金

足细胞中补体系统活化以及在足细胞损伤中作用机制研究
  • 批准号:
    81170657
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
双原子分子高激发振转能级的精确研究
  • 批准号:
    10774105
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
TB方法在有机和生物大分子体系计算研究中的应用
  • 批准号:
    20773047
  • 批准年份:
    2007
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Molecules for Quantum simulation
量子模拟分子
  • 批准号:
    MR/X033430/1
  • 财政年份:
    2024
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Fellowship
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
  • 批准号:
    2347622
  • 财政年份:
    2024
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Standard Grant
Quantum studies of dissociative electron attachment to molecules
分子离解电子附着的量子研究
  • 批准号:
    DE240100176
  • 财政年份:
    2024
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Discovery Early Career Researcher Award
Quantum networks of atoms and molecules
原子和分子的量子网络
  • 批准号:
    2892756
  • 财政年份:
    2023
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Studentship
CAREER: Ultracold Molecules Assembled in a Tweezer Array for Quantum Simulation
职业:将超冷分子组装在镊子阵列中进行量子模拟
  • 批准号:
    2239961
  • 财政年份:
    2023
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Continuing Grant
Toward high spatiotemporal resolution models of single molecules for in vivo applications
用于体内应用的单分子高时空分辨率模型
  • 批准号:
    10552322
  • 财政年份:
    2023
  • 资助金额:
    $ 186.41万
  • 项目类别:
Theory of generating quantum states with molecules in plasmo nics nanocavities
用等离子体纳米腔中的分子产生量子态的理论
  • 批准号:
    2883939
  • 财政年份:
    2023
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Studentship
Quantum dynamics of confined molecules
受限分子的量子动力学
  • 批准号:
    572947-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 186.41万
  • 项目类别:
    University Undergraduate Student Research Awards
Quantum-dynamical methods for modelling photo-induced processes in molecules
用于模拟分子中光诱导过程的量子动力学方法
  • 批准号:
    RGPIN-2018-04706
  • 财政年份:
    2022
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Discovery Grants Program - Individual
SimPoMol: Quantum Simulation with Ultracold Polar Molecules
SimPoMol:超冷极性分子的量子模拟
  • 批准号:
    EP/X023354/1
  • 财政年份:
    2022
  • 资助金额:
    $ 186.41万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了