Charged oxide inversion layer (COIL) solar cells
带电氧化物反转层 (COIL) 太阳能电池
基本信息
- 批准号:EP/V038605/1
- 负责人:
- 金额:$ 60.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photovoltaic (PV) solar cells now generate a significant proportion of the world's electricity and have vast potential for further growth. PV is enormously important to the UK with >13.5 GW now installed here, and growth worldwide is forecast to be over tenfold in the next three decades. More than 90% of solar cells are produced from crystalline silicon, and costs have fallen to levels not previously thought possible (< 2.34 US cents/kWh). Other technologies have yet to gain industrial traction and commercial barriers to entry are becoming substantial. Silicon-based solar technology is hence likely to remain dominant and critical to the expansion of renewable energy in the coming decades. Its continuous advancement is essential to accelerate uptake of and impact from green electricity generation worldwide and for fulfilling the UK's obligations under the Paris Agreement. The passivated emitter and rear cells (PERC) architecture is standard for today's silicon solar cells. The PERC technology will reach its practical limits in the next 10 years, with a top forecast commercial efficiency of ~24%. Overcoming this efficiency boundary requires cell architectures that circumvent the limitations of PERC. This project aims to develop a new cell technology to supersede PERC in which the drawbacks of high temperature processing are avoided, the efficiency potential of a single junction is fully exploited, and a route to implement tandem and bifacial architectures is directly possible. This programme brings together teams at the Universities of Oxford and Warwick with world-leading expertise in silicon surface passivation, carrier lifetime, and impurity management for the development of PV devices. The aim is to conduct fundamental work necessary to facilitate a step-reduction in the cost per Watt of PV electricity, thus producing a disruptive change in the advancement of this important renewable energy industry. This project will develop a charged oxide inversion layer (COIL) solar cell by integrating advanced nanoscale thin-film materials to augment the PV potential of a silicon absorber. This novel cell architecture has the potential to overtake the current standard PERC devices, while providing a direct route to use in emerging selective contact, tandem, and bifacial designs. So far, the efficiency of an inversion layer architecture has been exploited only to a limited extent, e.g. in a 18% cell. The potential of the COIL cell extends well beyond this mark, and as high as 28% in a single-junction configuration could be achieved. This project will deliver the fundamental understanding necessary to unlock this potential, exploit the inversion layer concept by engineering highly charged dielectric thin-films, and use these films to produce a prototype cell device.
光伏(PV)太阳能电池现在产生世界电力的很大一部分,并且具有进一步增长的巨大潜力。光伏发电对英国非常重要,目前在英国安装了超过13.5吉瓦,预计未来三十年全球增长将超过十倍。超过90%的太阳能电池由晶体硅制成,成本已经下降到以前认为不可能的水平(< 2.34美分/千瓦时)。其他技术尚未获得工业牵引力,进入的商业壁垒正在变得很大。因此,硅基太阳能技术可能在未来几十年内仍然占主导地位,对可再生能源的扩张至关重要。它的持续发展对于加速全球绿色发电的吸收和影响以及履行英国在巴黎协定下的义务至关重要。钝化发射极和背面电池(PERC)架构是当今硅太阳能电池的标准。PERC技术将在未来10年内达到其实用极限,最高预测商业效率约为24%。克服这一效率边界需要规避PERC限制的电池架构。该项目旨在开发一种新的电池技术,以取代PERC,其中避免了高温处理的缺点,充分利用了单个结的效率潜力,并直接实现串联和双面架构。该计划汇集了牛津大学和沃里克大学的团队,他们在硅表面钝化,载流子寿命和杂质管理方面拥有世界领先的专业知识,用于光伏器件的开发。其目的是进行必要的基础工作,以促进逐步降低光伏发电的每瓦成本,从而在这一重要的可再生能源行业的发展中产生颠覆性的变化。该项目将通过集成先进的纳米级薄膜材料来开发带电氧化物反型层(COIL)太阳能电池,以增加硅吸收剂的PV潜力。这种新颖的电池架构有可能超越当前的标准PERC器件,同时提供了一种直接的路线,用于新兴的选择性接触,串联和双面设计。到目前为止,反型层结构的效率仅在有限的程度上得到利用,例如在18%的电池中。COIL电池的潜力远远超出了这个标志,并且在单结配置中可以实现高达28%。该项目将提供解锁这种潜力所需的基本理解,通过设计高电荷介电薄膜来利用反型层概念,并使用这些薄膜来生产原型电池器件。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bias-voltage photoconductance and photoluminescence for the determination of silicon-dielectric interface properties in SiO2/Al2O3 stacks
偏压光电导和光致发光用于测定 SiO2/Al2O3 叠层中的硅电介质界面特性
- DOI:10.1063/5.0153204
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Masuch P
- 通讯作者:Masuch P
Enhancing dielectric-silicon interfaces through surface electric fields during firing
- DOI:10.1016/j.solmat.2024.112799
- 发表时间:2024-06
- 期刊:
- 影响因子:6.9
- 作者:R. S. Bonilla;Isabel Al-Dhahir;Xinya Niu;P.P. Altermatt;Phillip Hamer
- 通讯作者:R. S. Bonilla;Isabel Al-Dhahir;Xinya Niu;P.P. Altermatt;Phillip Hamer
Modelling of Kelvin probe surface voltage and photovoltage in dielectric-semiconductor interfaces
- DOI:10.1088/2053-1591/ac84c8
- 发表时间:2022-08-01
- 期刊:
- 影响因子:2.3
- 作者:Bonilla, Ruy Sebastian
- 通讯作者:Bonilla, Ruy Sebastian
Activation of Al2O3 surface passivation of silicon: Separating bulk and surface effects
硅 Al2O3 表面钝化的活化:分离体效应和表面效应
- DOI:10.1016/j.apsusc.2023.158786
- 发表时间:2024
- 期刊:
- 影响因子:6.7
- 作者:Grant N
- 通讯作者:Grant N
Ion-Charged Dielectric Nanolayers for Enhanced Surface Passivation in High Efficiency Photovoltaic Devices
用于增强高效光伏器件表面钝化的离子充电介电纳米层
- DOI:10.1002/admi.202300037
- 发表时间:2023
- 期刊:
- 影响因子:5.4
- 作者:Al-Dhahir I
- 通讯作者:Al-Dhahir I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruy Bonilla Osorio其他文献
Ruy Bonilla Osorio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruy Bonilla Osorio', 18)}}的其他基金
Interface Engineering for Terawatt Scale Deployment of Perovskite-on-Silicon Tandem Solar Cells
硅基钙钛矿串联太阳能电池太瓦级部署的接口工程
- 批准号:
EP/X037169/1 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Research Grant
Improved surface passivation for semiconductor solar cells
改进半导体太阳能电池的表面钝化
- 批准号:
EP/M022196/1 - 财政年份:2015
- 资助金额:
$ 60.71万 - 项目类别:
Fellowship
相似国自然基金
热敏性及光/热双重刺激响应性PNIPAm-grahene oxide复合物研究
- 批准号:21106099
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
康滇地轴元古代变质热液IOCG矿床—拉拉Fe-Oxide-Cu-Au-Mo-REE矿床研究
- 批准号:41072065
- 批准年份:2010
- 资助金额:48.0 万元
- 项目类别:面上项目
新型手性N-Oxide金属化合物的合成与催化研究
- 批准号:20872062
- 批准年份:2008
- 资助金额:25.0 万元
- 项目类别:面上项目
新型多齿多联氮杂环氮氧化物多氨基多羧基类稀土发光配合物及其在免疫分析中的应用
- 批准号:20761002
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
一氧化氮在猪卵母细胞发生过程中的调节作用及机制
- 批准号:30600432
- 批准年份:2006
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Standard Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
- 批准号:
24K17312 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
- 批准号:
2405325 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Standard Grant
RII Track-4:NSF: Synthesis of Oxide Ferroelectric Rashba Semiconductors for Low Power Computing
RII Track-4:NSF:用于低功耗计算的氧化物铁电 Rashba 半导体的合成
- 批准号:
2327352 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Standard Grant
Oxygen vacancy engineering on indium oxide vertical FETs for 3D power scaling
用于 3D 功率缩放的氧化铟垂直 FET 上的氧空位工程
- 批准号:
24K17328 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Say Yes to NO: The Next Generation Scaffolds with Localized and Sustained Nitric Oxide (NO) Delivery for Central Nervous System Regeneration
对“否”说“是”:具有局部和持续一氧化氮 (NO) 输送的下一代支架,用于中枢神经系统再生
- 批准号:
EP/X027198/2 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Fellowship
RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
- 批准号:
2327474 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Standard Grant
Thermospheric Estimation and CHaracterization with Nitric Oxide (TECHNO)
使用一氧化氮进行热层估计和表征 (TECHNO)
- 批准号:
2343844 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Standard Grant
Persistent Optical Phenomena in Oxide Semiconductors
氧化物半导体中的持久光学现象
- 批准号:
2335744 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Continuing Grant














{{item.name}}会员




