Charged oxide inversion layer (COIL) solar cells
带电氧化物反转层 (COIL) 太阳能电池
基本信息
- 批准号:EP/V038605/1
- 负责人:
- 金额:$ 60.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Photovoltaic (PV) solar cells now generate a significant proportion of the world's electricity and have vast potential for further growth. PV is enormously important to the UK with >13.5 GW now installed here, and growth worldwide is forecast to be over tenfold in the next three decades. More than 90% of solar cells are produced from crystalline silicon, and costs have fallen to levels not previously thought possible (< 2.34 US cents/kWh). Other technologies have yet to gain industrial traction and commercial barriers to entry are becoming substantial. Silicon-based solar technology is hence likely to remain dominant and critical to the expansion of renewable energy in the coming decades. Its continuous advancement is essential to accelerate uptake of and impact from green electricity generation worldwide and for fulfilling the UK's obligations under the Paris Agreement. The passivated emitter and rear cells (PERC) architecture is standard for today's silicon solar cells. The PERC technology will reach its practical limits in the next 10 years, with a top forecast commercial efficiency of ~24%. Overcoming this efficiency boundary requires cell architectures that circumvent the limitations of PERC. This project aims to develop a new cell technology to supersede PERC in which the drawbacks of high temperature processing are avoided, the efficiency potential of a single junction is fully exploited, and a route to implement tandem and bifacial architectures is directly possible. This programme brings together teams at the Universities of Oxford and Warwick with world-leading expertise in silicon surface passivation, carrier lifetime, and impurity management for the development of PV devices. The aim is to conduct fundamental work necessary to facilitate a step-reduction in the cost per Watt of PV electricity, thus producing a disruptive change in the advancement of this important renewable energy industry. This project will develop a charged oxide inversion layer (COIL) solar cell by integrating advanced nanoscale thin-film materials to augment the PV potential of a silicon absorber. This novel cell architecture has the potential to overtake the current standard PERC devices, while providing a direct route to use in emerging selective contact, tandem, and bifacial designs. So far, the efficiency of an inversion layer architecture has been exploited only to a limited extent, e.g. in a 18% cell. The potential of the COIL cell extends well beyond this mark, and as high as 28% in a single-junction configuration could be achieved. This project will deliver the fundamental understanding necessary to unlock this potential, exploit the inversion layer concept by engineering highly charged dielectric thin-films, and use these films to produce a prototype cell device.
现在,光伏(PV)太阳能电池可产生世界上的大部分电力,并具有巨大的进一步增长潜力。 PV对英国非常重要,目前已安装在这里的13.5 GW,并且在未来三十年中,全球增长将超过十倍。超过90%的太阳能电池是由结晶硅产生的,成本已降至以前不可能的水平(<2.34美国美分/千瓦时)。其他技术尚未获得工业牵引力,进入商业障碍正在变得越来越大。因此,总部位于硅的太阳能技术可能在未来几十年内对可再生能源的扩展保持占主导地位,并且至关重要。它的持续发展对于加速全球绿色发电的吸收和影响以及根据《巴黎协定》中英国的义务至关重要。钝化的发射极和后细胞(PERC)结构是当今硅太阳能电池的标准。 PERC技术将在未来10年内达到实际限制,最高预测的商业效率约为24%。克服该效率边界需要绕过PERC局限性的细胞体系结构。该项目旨在开发一种新的细胞技术来取代PERC,其中避免了高温处理的缺点,完全利用单个连接点的效率潜力,并且可以直接实现串联和双面体系结构的途径。该计划汇集了牛津大学和沃里克大学的团队,并在硅表面钝化,运营商寿命和杂质管理方面具有世界领先的专业知识,以开发PV设备。目的是进行必要的基本工作,以促进PV电力的每瓦成本逐步降低,从而在这一重要的可再生能源行业的进步中产生破坏性的变化。该项目将通过整合高级纳米级薄膜材料来增强硅吸收剂的PV电位,从而开发一个带电的氧化物反转层(线圈)太阳能电池。这种新颖的细胞体系结构有可能超过当前的标准PERC设备,同时提供新兴的选择性接触,串联和双面设计的直接途径。到目前为止,反转层体系结构的效率仅在有限的程度上被利用,例如在18%的细胞中。线圈电池的电势远远超出此标记,并且可以实现单个结构型的高达28%。该项目将提供必要的基本理解,以释放这种潜力,通过工程高电动的介电薄膜来利用反转层概念,并使用这些薄膜生成原型电池设备。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling of Kelvin probe surface voltage and photovoltage in dielectric-semiconductor interfaces
- DOI:10.1088/2053-1591/ac84c8
- 发表时间:2022-08-01
- 期刊:
- 影响因子:2.3
- 作者:Bonilla, Ruy Sebastian
- 通讯作者:Bonilla, Ruy Sebastian
Enhancing dielectric-silicon interfaces through surface electric fields during firing
- DOI:10.1016/j.solmat.2024.112799
- 发表时间:2024-06
- 期刊:
- 影响因子:6.9
- 作者:R. S. Bonilla;Isabel Al-Dhahir;Xinya Niu;P.P. Altermatt;Phillip Hamer
- 通讯作者:R. S. Bonilla;Isabel Al-Dhahir;Xinya Niu;P.P. Altermatt;Phillip Hamer
Bias-voltage photoconductance and photoluminescence for the determination of silicon-dielectric interface properties in SiO2/Al2O3 stacks
偏压光电导和光致发光用于测定 SiO2/Al2O3 叠层中的硅电介质界面特性
- DOI:10.1063/5.0153204
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Masuch P
- 通讯作者:Masuch P
Recombination in Passivating Contacts: Investigation Into the Impact of the Contact Work Function on the Obtained Passivation
钝化接触中的重组:研究接触功函数对获得的钝化的影响
- DOI:10.1002/solr.202201050
- 发表时间:2023
- 期刊:
- 影响因子:7.9
- 作者:Le A
- 通讯作者:Le A
Ion-Charged Dielectric Nanolayers for Enhanced Surface Passivation in High Efficiency Photovoltaic Devices
用于增强高效光伏器件表面钝化的离子充电介电纳米层
- DOI:10.1002/admi.202300037
- 发表时间:2023
- 期刊:
- 影响因子:5.4
- 作者:Al-Dhahir I
- 通讯作者:Al-Dhahir I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruy Bonilla Osorio其他文献
Ruy Bonilla Osorio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruy Bonilla Osorio', 18)}}的其他基金
Interface Engineering for Terawatt Scale Deployment of Perovskite-on-Silicon Tandem Solar Cells
硅基钙钛矿串联太阳能电池太瓦级部署的接口工程
- 批准号:
EP/X037169/1 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Research Grant
Improved surface passivation for semiconductor solar cells
改进半导体太阳能电池的表面钝化
- 批准号:
EP/M022196/1 - 财政年份:2015
- 资助金额:
$ 60.71万 - 项目类别:
Fellowship
相似国自然基金
双位点金属氧化物催化剂原子级界面调控及锌-空气电池性能研究
- 批准号:22305010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
互花米草入侵介导滨海湿地土壤铁氧化物转化对有机碳固持的影响及生态机制研究
- 批准号:32301429
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钒基氧化物配位阴离子缺陷调控及其储锌机理与动态演变的原子尺度研究
- 批准号:52302322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模型氧化物表面担载氧化物纳米结构的界面限域效应研究
- 批准号:22372158
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
固体氧化物燃料电池中Fe-Cr合金互连体与YSZ电解质的反应空气钎焊连接机理与接头组织调控研
- 批准号:52371024
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Standard Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
- 批准号:
24K17312 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
- 批准号:
2405325 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Standard Grant
RII Track-4:NSF: Synthesis of Oxide Ferroelectric Rashba Semiconductors for Low Power Computing
RII Track-4:NSF:用于低功耗计算的氧化物铁电 Rashba 半导体的合成
- 批准号:
2327352 - 财政年份:2024
- 资助金额:
$ 60.71万 - 项目类别:
Standard Grant